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ABSTRACT 

This report is addressed to some aspects of the analysis of vibration- 
induced attitude errors  in strapdown inertial navigators. Three common 
pulse torquing techniques for strapdown gyros are described, The im- 
portant considerations in choosing a rebalance scheme are reviewed and 
relative advantages of the three approaches are discussed. Binary and 
ternary pulse rebalanced gyros are analyzed using describing functions. 
Closed loop sinusoidal transfer characteristics are obtained analytically 
and compared with the results of detailed gyro simulations. The effects 
of compliance between the gyro wheel and gimbal are also illustrated by 
analysis and simulation. 

Compensation of limit cycling binary torqued gyros is treated with the 
goal of providing a better closedloop response. A discussion of the-dith- 
ered binary gyro is presented, illustrating limit cycle determination and 
closed loop characteristics. A brief discussion of plans for a compre- 
hensive gyro and system error  simulation is provided e The appendices 
provide details in support of the report body and also treat diverse sub- 
jects such as dynamic errors  in single- degree-of-freedom pendulous ac- 
celerometers, gyro misalignment caused by angular rates about the out- 
put axis and the recovery of angular rateinformation from pulse torqued 
gyros. The research discussed in this report includes work presented 
in TASC report TR-101-3 and constitutes an extension of that effort. 
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1, INTRODUCTION 

1,l VIBRATION-INDUCED ATTITUDE ERRORS 
IN STRAPDOWN INERTIAL SYSTEMS 

The single-degree-of-f reedom gyro, originally perfected for 
use in platform inertial guidance systems, can exhibit large e r rors  when 
adapted to the strapdown application. The major sources of these new 
errors  are related to the angular motion environment experienced by the 
gyro when it is rigidly attached to a vehicle, For example, the physical 
inertias of several components combine with angular motion to generate 
torques on the float which are erroneously interpreted as angular motion 
about the sensor input axis. Also, the torquing device used to keep the gyro 
pickoff angle small is prone to certain inaccuracies and can create signi- 
ficant instrument errors ,  some of which depend on the angular motion 
environment, 

the presence of linear o r  angular vibrations about several 
gyro axes many of the motion-induced gyro e r rors  can combine to produce 
constant torques on the float. These are interpreted as a constant angular 
rate about the gyro input axis and ultimately as a drift rate about the cor- 
responding strapdown system axis. Other e r ror  torques generated by 
angular and linear vibrations do not create constant e r rors  in gyro output. 
However, as a consequence of the manner in which gyro data is processed 
in a strapdown system many of these effects can cause large attitude drift 

rates in the navigator. Prior work, reported in Refs. 1 and 2, indicates 
that many of the individual motion-induced gyro errors can create strap- 
down system drift rates well in excess of those commonly quoted for 
platform inertial navigators, 
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To permit employment of single-degree-of-f reedom gyros in 
strapdown navigators it ,is essential that the vibration-induced system 
errors  be analyzed, A more ambitious goal is the ability to synthesize 
o r  select the best gyroscope for a given mission-related environment, 
Presently, however, neither analysis nor synthesis can be performed with 

confidence because necessary details concerning the behavior of strapdown 
gyros are difficult to describe mathematically. In particular, the trans- 
mission characteristics relating motion-induced error  torques to errors  
in the sensor output are complex because the typical inertial grade strap- 
down gyro is coupled with a sampled,nonlinear rebalance device. Accurate 
analysis of vibration-induced strapdown system errors  must await develop- 
ment of mathematical descriptions of strapdown gyro transmission char- 
acteristics that are simple and accurate over the frequency range of 
interest , 

In Refs, 1 and 2 an attempt was made to analyze the performance 
of a limit cycling binary gyro. This report extends that approach to cover 
gyros using ternary and time modulation rebalance techniques, The analy- 
ses of the binary and ternary gyros were verified by simulation and several 
comparisons are presented in Sections 4 and 5. It is concluded that the 
analytic approach provides a good means of predicting gyro loop transmis- 
sion characteristics for sinusoidal inputs over most frequencies of interest. 
Subsequent work will treat gyros employing time modulation torquing and 
the transmission of random inputs through strapdown gyro loops. 

l o 2  SUMMARY 

References 1 and 2 treat motion-induced gyro error  torques, 
and provide some approximate calculations relating the vibration environ- 
ment to strapdown system errors. In these two documents an effort was 
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made to describe analytically the transmission characteristics of a binary, 
limit cycling gyro loop. The work discussed in this report continues that 
analysis. Three basic pulse rebalance techniques are described in Section 
2. Important considerations in selecting a torquing scheme are discussed 
and the relative merits of the three approaches are reviewed. A brief dis- 
cussion treating the propagation of vibration-induced errors  through a 
linear gyro loop is presented in Section 3. 

The linear response of a limit cycling binary gyro is shown in 
Section 4,to depend on the presence of the unforced oscillation in the loop, 
When inputs of a size and frequency large enough to extinguish the limit 
cycle occur, the binary gyro loop also exhibits a nonlinear response. How- 
ever, the conditions under which this occurs are unlikely and can be pre- 
dicted analytically. The uncompensated binary gyro loop exhibits a highly 
peaked gain at frequencies below that of the limit cycle. It is demonstrated 
that dynamic compensation in the gyro loop can reduce the resonant re- 
sponse o r  cause it to occur at much higher frequencies. In Section 5 the 
ternary gyro is shown to have a nonlinear closed loop response, particu- 
larly to inputs of high frequency. Both binary and ternary gyro loops were 
shown to suffer a significant deterioration in transfer characteristics if  
sufficient stiffness is not provided in the rotor bearings. This effect is 
of less consequence to the ternary gyro because its nonlinear nature would 
probably preclude use in measuring inputs in the frequency range af- 
fected. 

Motivation is presen€ed in Section 6 for the construction of a 
comprehensive strapdown gyro simulation which evaluates system attitude 
errors. The appendices provide details related to describing function 
analysis and the gyro simulations used, as well as gimbal suspension design, 
dynamic errors  in pendulous accelerometers and recovery of angular rate 
information from pulse torqued gyros. 
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Each major section opens with a summary of 
performed, a synopsis of the results obtained and a 
ting these results to strapdown g 

4 



2. DESCRIPTION OF PULSE TORQUING SCHEMES 

SUMMARY 

Three commonly-used nonlinear rebalance techniques 
for  strapdown gyros are treated - binary and ternary 
delta modulation and time modulation. Important char- 
acteristics of pulse rebalance schemes are discussed 
and the relative disadvantages of each technique are 
summarized in tabular form. It is concluded that the 
time modulation approach provides better resolution 
than either delta modulation scheme while exhibiting 
no important disadvantages. 

2.1 PULSE REBALANCED GYROS 

The single-degree-of-freedom gyro consists of a spinning mass 
supported by a gimbal structure which is free to rotate with respect to the 
instrument case about one axis,, The basic elements of this device are 
illustrated in Fig. 2.1-1. The axis of gimbal rotation is usually called 
the output axis and a device is included to measure the output angle, cyo. 

In most high quality gyros the wheel and gimbal are enclosed in and at- 
tached to a cylindrical structure, o r  float, and a fluid is inserted between 
the float and case. The fluid serves two purposes: it provides a buoyant 
force to unload the gimbal bearings and it damps angular motion between 
the gyro case and float. In addition to the output axis, two other directions 
are specified with respect to the instrument case. They are the nominal 
direction of the rotor spin axis (rotor angular momentum) and the third 

axis required to define an orthogonal coordinate system. The latter is 
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usually called the gyro input axis. Angular motion about the input axis 
creates a gyroscopic torque on the rotor and gimbal assembly, in the di- 
rection of the output axis. Specifically, a positive angular rate about the 
input axis shown in Fig. 2, l -1  generates a negative torque about the output 
axis. If damping between the case and float is linear and no other torques 
occur, the output angle is proportional to the integral of angular rate about 
a direction normal to the output and rotor spin axes. 

Spin Reference Axis 

\ \ Rotor /// 

Figure 8.1- 1 Single- Degree- of - Freedom Gyro 

As %he float rotates with respect to the gyro case, the sensitive 
axis of the instrument moves with it; if  the angular rates measured are to 
be expressed in case-fixed coordinates a transformation must be performed 
between float and case axis systems. Also, i f  a0 is permitted to become 
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large, a wide angle transducer is required to measure this angle. In most 
applications the output angle is not allowed to exceed a few milliradians. 
Consequently, a very accurate pickoff is employed to measure a. and the 
sensitive axis is assumed to be fixed with respect to the instrument case. 

In inertial navigators empIoying a stable platform, gyros of this 
type are used to sense angular motion with respect to an inertially fixed 

reference and the platform is rotated in a manner which seeks to null the 
output angle. Consequently, the sensitive axis of the gyro is always in 
close coincidence with the case-fixed input axis and a0 is an accurate mea- 
sure of angular rotation about that direction. When it is necessary to 
rotate platform inertial navigation systems relative to a fixed coordinate 
frame, a mechanism for applying precise torques about the output axis is 
added to the gyro. ’ The gimbal, rotor and float assembly then acts as a 
torque summer, interpreting the moment applied by the torque generator 
in terms of an angular rate about the input axis, Since the platform is ro- 
tated in a manner which always nulls the output angle, a true angular rate 
results, equal in magnitude and of opposite sign from that represented by 

the torque gene rat0 r output 

Gyros used in strapdown navigators are likely to experience 
large angular motions about the case input axis. In order to avoid the coni- 

plications connected with a large output angle, a powerful torque generator 
is included in the instrument and the rotor spin axis is kept in close coin- 
cidence with the spin reference axis. By keeping the output angle small, 
variations in a. can be attributed to angular motion about the input axis. 

about its output axis. The equivalence between torque applied to the gimbal 
and input angular rate is employed in a platform system to generate motion. 



The same relation can be used in the strqdown application to imply angular 
rate from torque, Figure 2.1-2 is a schematic representation of a rebal- 
a c e d  single-degree-of-f reedom gyro. 

Rebalance 
Elec trod c s Single- Degree-of- Freedom Gyroscope --------------- 

"InPUf)l' 
Gyroscopic Torque 7 .I 

I 

Figure 2.1-2 Rebalanced Gyro Schematic 

Direct determination of the torque applied is difficult and most 
designers rely on measurements of current flow in the torquer windings 
to indicate the moment produced. Unfortunately, the torque generator does 
not exhibit a gain characteristic which is sufficiently linear, and i f  a wide 
range of torquer currents is employed extensive calibration is required. 
A common way to avoid problems with torquer nonlinearity to permit ap- 
plication of only two torque levels, equal in magnitude and opposite in sign. 
(A third, o r  zero level may also be considered.) .fn this case, the torque 
generator need only be calibrated and adjusted at two distinct points on its 
gain curve, permitting very accurate control of the moments applied to the 
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gyro output axis. A further refinement to the gyro rebalance mechanism 
is provided by carefully dividing the torquer current into pulses of known 
duration. Each pulse then represents an incremental rotation of the gyro 
about its input axis and the gyro rebalance loop output is well  suited for 
calculating system attitude changes in a digital computer. In the ideal 
situation, the rebalance torque occurs as a sequence of pulses of positive 
and negative torque, each pulse having the same weight, and the strapdown 
gyro output consists of a train of positive and negative electronic impulses 
accurately representing incremental rotations about the sensor input axis. 
The single-degree-of-freedom gyro is thus said to be "pulse rebalanced." 

Binary Delta Modulation - The binary delta modulation pulse 
rebalance scheme always provides a rebalance torque. The possibility of 
omitting a torque pulse is purposely excluded. This mechanization can be 

represented by a binary logic element inserted between the torquer and a 
signal representing the gyro output angle (see Fig. 2,1-3). The torquer 
current, of magnitude D, is supplied with a direction (sign) depending on 
the sign of the output angle. Pulses of torque are created by only allowing 
the logic output to change at fixed intervals, T. A further refinement may 
be employed, permitting torque to be applied only over a known fraction of 
each interval, but this has little bearing on the aspects of pulse rebalance 
techniques under consideration here. Figure 2.1-4 shows a representative 
train of torque pulses applied to a gyro gimbal when binary pulse torquing 
is employed. The shape of the pulses generated differs from a rectangle 
because of lags in both the torquer and the current source driving it. 

Ternary Delta Modulation - The ternary delta modulation techni- 

que differs from the scheme described above by permitting the absence of 
a torque pulse when the output angle magnitude is small. The mechanization 
can be represented by a relay with an input deadzone inserted between the 
output angle signal and the torquer, Figure 2.1-5 illustrates the ternary 
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Output (Torquer Current) 

Input (Output Angle) 

Figure 2.1-3 Two Level Logic 

Torque t 

t 

k- Interrogation 
Interval 

Figure 2.1-4 Representative Torque Output from 
Delta Modulated Pulse Rebalance Technique 
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detection logic. The deadzone width, -26 ,  is symmetric about zero and 
defines a range of output angles for which no rebalance torque is applied. 
For low frequency inputs 6 can be related to an angular rotation about the 
input axis of the gyro which will not be detected, However, for input fre- 
quencies above the float bandwidth, the relation is more co 1 

other aspects of the ternary delta modulation technique are identical to 
those of the binary approach just discussed. 

- output 

Input 

Figure 2.1-5 Three Level Logic 

Time Modulation - A third pulse torquing technique, ti 
lated torquing, adds the gyro output angle to a periodic w ~ v ~ f o r ~  and em- 
ploys binary logic on the sum. Figure 2.1-6 illustrates this approach. 
The binary logic is interrogated at a frequency which is a multiple of the 

sawtooth frequency. In this manner, each period of the added waveform 
is divided into an even integral number of parts. Current driving the to 
generator can only be switched at the moment the binary logic is interro- 
gated. 
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Saw tooth Wave 
T 

Flo 

Two Level Logic 

Figure 2.1-6 Time Modulated Torquing 

If the output angle is at null, the torquer provides a pair of 
pulses, one positive and one negative. The torque pulses are of equal 
duration and occur at the frequency of the sawtooth wave. The net effect 
of each pulse pair on the output angle is zero, but the float will  oscillate 
at the sawtooth frequency, To avoid detecting this float oscillation the 
signal representing output angle is usually passed through an appropriate 
filter, If the filtered indication of output angle differs from null, the pulse 
pairs appear at the same frequency but the pulses in each pair are of different 
duration, is illustrated in Fig, 2.1-7, The difference between the length 
of two adjacent pulses is such that the net effect is to drive the output angle 
toward null, The sawtooth amplitude is chosen to ensure that the torquer 
always provides a moment in the same direction at the start of each saw- 
tooth period; the amplitude of the added waveform is larger than any anti- 
cipated signal representation of ao. For this reason, the torquer current 
always changes sign at the start of a new sawtooth. Also, the current is 
only allowed to reverse once during each period of the added waveform. 
These restrictions ensure the appearance of one positive and one negative 
pulse, in the same sequence, each sawtooth period. 
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dt+- Interrogation Period 

k-- Basic Pulse Period -4 

Figure 2 , l - 7  Torquer Waveform for 
Time Modulated Torquing 

When time modulated torquing is employed, the gyro output can 
take two forms. A pulse sequence can be provided at an even multiple of 

the sawtooth frequency, corresponding to the rate at which the binary logic 
is interrogated. In this case, the output would appear as a long series of 
pulses of one sign followed by a long series of pulses with the opposite 
value, Each pulse represents an incremental rotation about the input axis, 
of a magnitude determined by the torquer capability and the interrogation 
frequency. Most of the information contained in this form of output repre- 
sents the added waveform. Only the difference between the number of pulses 
in two successive series can be construed to represent a. and consequently 
motion about the gyro input axis. Commonly, this difference is determined 
by summing pulses over each period of the sawtooth. The net difference, 
available at the frequency of the sawtooth wave, represents the information 
content of the gyro output. Since the sawtooth typically has a one milli- 
second period this alternate form of the gyro output has a bandwidth com- 
patible with many of the computers used to process angular motion infor- 
mation. 
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a fixed increment Digital Differential Analyzer (DDA) is used to 
process gyro outputs, the high frequency pulse train can be employed. 

most of the information contained is related 
at was  added to a0 and the attitude calculations 

If all gyros are not provided with the same 
do-coning system drift rates can be caused. 

~ummary  - 
ch represent 

ee pulse torquing techniques provide digital 
ments of angular rotation about the sensor 

input axis, The angular rotation is implied from a carefully calibrated 
ue pulse applied to the gyro gimbals when a pulse occurs. Any devia- 

integral of torque from that represented by each 
error  which is not recoverable, Le. ,  differs 

ut errors  caused by storage of information by the 

on of the torque pulse can cause constant gyro drift 

ons provide random output errors., Differences 
lse generated and that implied by each output 

urce of errors  in strapdown sensors. 

rn accuracy is considered, factors such as quantiza- 
e of pulse rebalanced gyros are important. 
cillations in the gyro output is also considered 

gyro torquing schemes. In addition, frequency 
cs and energy dissipation in the gyro loops are sig- 

ses of pulse rebalancing errors  are described 
ssion of the relative advantages of each torquing 
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2.2 ASPECTS OF PULSE TORQUING.GYR0 ERRORS 

Torque Pulse Variations - Frequently the magnitudes of torque 
pulses applied to the float differ from those inferred by the correspon 
electrical impulses at the gyro output. If the deviations are const 
calibration of the strapdown gyro loop will eliminate some of the errors 
generated. From Fig. 2.2-1 it can be seen that a bias error  can result for 
both the binary and ternary pulse rebalanced sensors. Also scale factor 
errors  are present in both instruments. However, removing errors  of 
this kind from the ternary gyro generally requires two scale factor correc- 
tions, The correction used at a particular time depends on the sign of the 
input angular rate, This represents an unwanted complication in proces- 
sing the gyro output. When the rebalance electronics drift, causing uncom- 
pensated variations in torque pulse weights, new bias and scale factor errors 
in the binary gyro result. The bias e r ror  is caused by the fact that to 
pulses are always being generated in the binary rebalance loop. It is in- 
dependent of the angular motion environment. On the other hand, only 
scale factor errors  are generated in the ternary loop when the rebal 
electronics drift. Consequently, if the input angular rates are small the 

ternary gyro will be less sensitive to unknown variations in torque pu 
weights . 

Quantization - The output of each pulse rebalanced strapdo 
gyro is a series of digital pulses representing incremental rotations 
the input axis. This form is not well suited for drift-free calculation of 
the direction cosine matrix because information is lost regarding the o r  
in which rotations take place about the system axes, The commutativity 
errors  which can result are largely related to the gyro output qu~ t i za t ion  
level and the manner and speed with which the outputs are processed. 
(Reference 4 provides an approximate expression for commutation errors  
generated by gyro output quantization. In the relation stated there, the 
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drift rate about a particular axis is given by half a gyro output quantum 
multiplied by the difference in angular rates experienced about the other 
two axes. ) As a general rule, fine quantization is to be preferred, 

Delta modulation pulse torquing schemes achieve fine qu 
by interrogating the nonlinear logic element at a high frequency , premitting 
the torque level to change sign rapidly. While the size of the output quantum 

on 

me modulation technique is also determined by the interrogation 
frequency, the rate at which torquer current changes sign is determined 
by the frequency of the sawtooth wave. In gyros employing delta modula- 
tion rebalance schemes, quantiziltion is limited by time constants in the 
torque generation mechanismso If the pulses are of too short a duration, 
the torquer current will not reach its design level before the next potential 
switching time occurs. Because of eddy current effects, when the torquer 
lag is on the order of the pulse period, two consecutive torque pulses in 
the same direction will not have the same time integral (effect on ao) as 
the sum of two separate pulses (see Figo 2.2-2), Consequently, all cur- 
rent pulses will not have equal weight and an accurate measure of angular 
motion about the gyro input axis cannot be found by counting output pulses. 

wo Consecutive Pulses 

t 

Interrogation Interval 

Figure 2.2-2 Torque Pulse Variation when the Torquer Lag 
is a Significant Fraction of the Pulse Period 
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In the time modulation torquing scheme, quantization is not tied 
directly to torque pulse width. The current switching frequency is strictly 
limited and quantization is determined by the number of points in each 
cycle of the sawtooth at which the torque can change sign. In the absence 
of switching delays, infinitesimal quantization is possible,, The practical 
limit isimposed by the ability to switch the torque levels accurately in 
time. Using this approach, torquer time constant problems are eliminated 
by choosing the amplitude of the added waveformso that torquer current 
always reaches the desired level before the next change occurs. 

Information Rate - The information rate, defined here as the 
frequency with which new indications of system angular motion will be avail- 
able to the attitude transformation computer, can depend on the pulse 
torquing technique chosen,, Typically, a gyro with time modulation rebal- 

ance torquing can provide output impulses faster than one using either of 
the delta modulation approaches. Each impulse is interpreted as an incre- 
ment of angular rotation about the instrument's input axis. However, as 
discussed earlier, most of the information actually present in the raw 
output of this rebalance technique relates to the oscillatory signal added 

to a. and not to angular motion experienced by the gyro. The information 
rate of a gyro employing time modulated torquing is essentially limited by 
the frequency of the additive oscillatory signal,used in mechanizing this 
approach. It would then appear that the information rate of gyros using 
the delta modulation approach to rebalance torquing is higher than those 
employing the time modulation technique, when present interrogation fre- 
quencies are considered. However, the practical rate at which angular 
motion cm be sensed by this kind of strapdown gyro is usually limited by 
lags in the float dynamics, not the sampling frequency; output pulses which 
change sign at a rate near that of the interrogation clock are more likely 
to be caused by electrical noise than high frequency motion inputs. Ih 
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summary, the useful information rate *of a contemporary floated single- 
degree-of-freedom strapdown gyro generally is limited not by the pulse 
rebalance technique employed but by float dynamics, 

Unforced Oscillations - All three pulse torquing schemes pro- 
duce unforced oscillations in the gyro loop at one time o r  another. The 
limit cycle behavior of a control loop containing a binary nonlinearity is 
well known (Ref . 1). In the presence of many inputs, the three level 
pulse torqued gyro and the time modulation scheme will also exhibit cyclic 
errors.  The unwanted oscillations all result from the use of torque pulses 
to rebalance the gyro. Limit cycles in pulse rebalanced gyros can be mis- 
taken for coning motion if  they occur with proper phase and at the same 
frequency. System attitude drift rates are generated in this manner, The 
binary delta modulation scheme is usually thought to be the least satisfac- 
tory from this point of view. However, it can be shown that slight differ- 
ences between limit cycle periods of the different gyros in a strapdown triad 
will prevent large system errors  of this type (see Ref. 1). Thus, gyros 
with slightly different characteristics may be desired. 

Gyro Frequency Response Characteristics - Closed loop response 
to sinusoidal inputs is a useful description of behavior. Closed loop gain 
and phase shift characteristics are useful in determining strapdown system 
errors  when the gyro loop is assumed to be linear (see Section 3). Approxi- 
mate determination of these characteristics is discussed in this report for 
all three rebalance techniques, Torque loops employing binary logic ap- 
pear to be more readily described in terms of linear behavior than those 
using ternary logic (see Section 5. I), offering an advantage when analyzing 
and compensating dynamic system errors. 
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Energy Dissipation - Temperature gradients within the gyro 
structure are a major cause of single-degree-of-freedom gyro drift. If 

the gradients can be held constant, proper testing will enable accurate 
compensation of these effects. While it consumes less power in most mo- 
tion environments, the ternary delta modulation torquing scheme does not 
usually provide a uniform energy flow into the torquer. To avoid this 

obvious cause of varying temperature gradients, the current source can 
be switched into a dummy load when no torque to called for. However, i f  

the same heat pattern is to be produced, this requires a dummy winding 
the same size as the torquer. Situations do exist where the ternary tech- 
nique will provide essentially constant energy flow without the extra wind- 
ing. For example, while operating in the angular rate environment 
generated by a limit cycling spacecraft attitude control system, 

2,3 COMPARISON OF PULSE TORQUING TECHNIQUES 

Binary Delta Modulated Torquing - The binary delta modulation 
rebalance technique provides a gyro loop response which is linear because 
of the limit cycle always present in this kind of system. However, some 
compensation within the gyro loop may be desired to improve its behavior, 
Because torque is always being generated, energy is dissipated within 
this kind of an instrument at a constant rate and no significant errors  are 
caused by variations in temperature gradients. A high rate of power 
consumption results, even in the most benign motion environment. 
A limit cycle is always present in this instrument and consequently strap- 
down system attitude drift rates can result. The output quantization level 
of a gyro using this rebalance technique is limited by torquer dynamics 
and the output resolution is generally poorer than can be obtained from 
sensors using time modulation torquing. Also, the instrument is relatively 
sensitive to uncompensated deviations in the size of rebalance torque pulses. 
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Binary delta modulation requires a minimum of electronic components, 
suggesting better reliability. Section 4.1, 4.2 and 4.3 of this report treat 
aspects of binary pulse torquing. 

Ternary Delta Modulated Torquing - Gyros employing ternary 
delta modulated torquing can conserve electrical energy in a benign envir- 
onment such as that encountered during long space missions. In addition, 
there is less tendency to exhibit cyclic output errors. Because a null 
torquer current can be achieved with high accuracy, they usually have a 
lower drift rate in the absence of an input and are less sensitive to devia- 
tions in torque pulse size. However, in a variable environment unstation- 
a ry  temperature gradients can be generated inside the instrument unless a 
dummy electrical load is used to dissipate energy when no torque pulse is 
called for. If this additional device is added to the gyro, low power con- 
sumption is sacrificed and the weight and size of the instrument are in- 
creased. As with the gyro using binary delta modulated torquing, the 
ternary rebalanced sensor suffers from an output resolution that is limited 
by torquer dynamics. A gyro loop using this torquing scheme exhibits a 
nonlinear response to high frequency inputs, casting doubt on its value as 
a strapdown sensor in vigorous angular vibration environments. The 
ternary gyro also displays multi- valued response characteristics in the 
high frequency range. Section 5 of this report deals with the ternary pulse 
rebalanced gyro. 

. 

Time Modulated Torquing - The output resolution of a gyro 
employing time modulated torquing is essentially independent of torquer 
dynamics. Consequently, this type of instrument uses finer quantization 
than is commonly found in other pulse rebalanced gyros. An oscillatory 
e r ror  can appear in the gyro output but this is much smaller than those 
occurring with binary delta modulation techniques. A high power consump- 
tion is characteristic of this rebalance scheme but temperature gradients 
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within the device are held constant. This type of instrument exhibits a 
relatively large sensitivity to variations in torque pulse weight. Analysis 
indicates that a more satisfactory linear response can be obtained from 
this type of gyro than is possible using simple binary torquing in an uncom- 
pensated loop. Of the three techniques discussed, time modulated torquing 
requires the largest number of electronic components. 

Summary - The three pulse torquing techniques discussed are 
compared in Table 2.3- 1, .Some representative values of important para- 
meters are listed to aid in the comparison, None of the approaches dis- 
cussed offers a clear advantage in all situations. If constant energy dissi- 
pation over a wide range of inputs and linear response are required at the 
outset, the ternary approach can probably be ruled out, However, when 
the angular motion environment is quiet and reasonably constant the ter- 
nary gyro has the advantage of low power consumption and is less affected 
by torque pulse deviations. All  three techniques appear capable of providing 
the same information rate, but the time modulation approach can give better 
output resolution because it permits output quantization to be specified 
independent of the torquer design. 
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TABLE 2.3-1 

COMPARISON OF 

UNDESIRABLE 
F E A T U R E S  

Output Quantum 
Level Limited by 
Torquer Dynamics. 

Unforced Oscillations 
in the Sensor Output. I 
Amplitude Dependent 

Characteristics. 

Gradients in the Gyro. 

High Power 
Consumption in a 
Benign Environment. 

PULSE TORQUE TECHNIQUES 

REBA LANCE T E C H N I Q U E S  
BINARY TERNARY 
DELTA DELTA TIME 

MODULATION MODULATION MODULATION 

r 

AB< I a3c for the 
Hamilton Standard I RI- 1170 under simi. 

*emin > 3wim,~tg. 

about 20 @c o r  more when 
ymax = 1 rad/sec lar circumstances. 

X X 

X X 

COMMENTS 

Gyro output quantum, AO, is 
independent of torque lags when 
the time modulation technique 
is employed. 

Ternary gyro can also exhibit 
output oscillations. The finer 
luantization available with the 
time modulation schemes 
reduces the amplitude of these 
e mors. 

See Fig. 5.1-7 for an illustra- 
tion of the amplitude dependent 
response characteristics of the 
ternary gyro. 

This can be avoided in the 
ternary gyro also but at the ex- 
pense of significant increases in 
torquer size and weight. 

The ternary gyro also suffers 
this problem if  a dummy elec- 
trical load is added to give 
stationary temperature gradients 
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3. STRAPDOWN SYSTEM ATTITUDE ERRORS 
- 

ARISING FROM VIBRATIONAL MOTION 

SUMMARY 

The system attitude drift rate caused by the interaction 
of vehicle vibrations and single-degree-of-freedom 
(SDF) gyro parameters is discussed. Major sources 
of system drift rate are developed followed by a dis- 
cussion of possible gyro parameter selections to re- 
duce attitude error, It is assumed that the gyros can 
be represented by a linear transfer function relating 
torque on the float to sensor output. No errors  are 
presumed to be generated in the calculations used to 
process gyro outputs, The importance of simple ana- 
lytic descriptions of gyro loop transfer characteristics 
is discussed. 

3.1 DESCRIPTION OF GYRO AND VIBRATION CHARACTERISTICS 

The error  torques on a single-degree-of-freedom gyro are de- 
veloped in Ref. l. In the discussion which follows these torques are 
assumed to propagate through a linear gyro loop whose Laplace transform 
transfer function is represented as G(s). At any particular frequency of 
input the in-phase and quadrature components of the gyro output are speci- 
fied by decomposing G(s) into real and imaginary parts: 

I = ReG(u) + j ImG(u) (3.1-1) 
s = ju 
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he correlation characteristics of angular and linear vibrations 
d in terms of spectral density functions when only one axis is 

considered and the components of cross spectral den ectrum and 
m, when two axes are considered. For e le, when angular 

vibrations are described the spectral density is represented by the symbol 
ch is the mean product of angular rate oscillations at frequency 

W ,  about the r axis. When angular motion about two different axes is under 
consideration the cospectral density function @ r s ( V )  represents the mean 
product of two angular rate oscillations at frequency V, one about the r axis, 
the other about the s axis. Only those components of the oscillations which 
are in phase provide contributions to @,so To describe vibrations that are 

but in quadrature, a quadspectral density function @ks (v )  is 
efined. It is the mean product of the angular rate oscillation about the r 

axis and the vibration about the s axis phase shifted 7r/2 radians. To illus- 

trate, suppose the spin and input axes of a particular gyro experience the 

f o l l o w i ~  lar rates: 

os = a sin vt 

q = b sin vt + c cos vt 

Then; 
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Similar spectral density functions which describe the correlation charac- 
teristics of linear vibrations are designated q r r ( V ) ,  % r s ( V )  and Wrs(V). 
It is assumed that all necessary density functions are known. 

t 

0 

t 

x Gyro 

Figure 3.1- 1 Orientation of Gyro and System Axes 

In order to relate system er ror  growth to vibration-induced gyro 
errors  the orientation of each gyro with respect to the vibration axes must 
be specified. The most general orientation is used here. The strapdown 
system (vehicle body) axes in which the vibration spectral density informa- 
tion is stated are designated x, y and zo The gyro which measures angular 
motion about the x axis has, of course, its input axis in the x direction. 
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The spin and output axes of this sensor are parallel to the y and z system 
axes. The gyro measuring angular motion about the y axis has its spin 
and output axes parallel to the z and x directions, etc. Figure 3.1- 1 illus- 
trates the relative orientation of gyro and system axes. 

3.2 DF€IFT RATE CONTRIBUTIONS 

Only constant system attitude drift rates are considered here. 
The causes discussed below represent the major contributors to vibration- 
induced system drift rate. However, the list is not necessarily complete. 

3.2.1 Spin-Input Crosscoupling 

This er ror  is caused by coupling between angular motion about 
the nominal rotor spin axis and a float angle generated by angular motion 
about the gyro input axis, It can result in a constant drift rate component 
in the individual gyro. The float angle is given by 

where 

H = gyro angular momentum 

q 
Ksg = signal generator gain 

= angular rate about the input axis 

= torquergain 
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The average value of the vibration-induced gyro drift rate usa0 is given by 

(3.2- 1) 

3.2,2 Spin-Output Crosscoupling 

This error is caused by angular motion about the nominal rotor 
spin axis and a float angle generated by angular acceleration about the gyro 
output axis,, It can result in a constant drift rate in the individual gyro. 
The float angle is given by 

where 

bo = moment of inertia of the gimbal 
and rotor about the output axis 

The average value of the vibration-induced drift rate is given by 

- 'Io0 p u d u  [ReG( v )  Q&(v) + Im G(u)  Qos(u)] 
- Ksg% 0 
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3.2.3 Anisoinertia 

This er ror  is caused by a mismatch of moments of inertia about 
the spin and input axes, in combination with angular motion about these two 
axes. Spin axis angular motion of the gyro case and gimbal is transferred 
to the rotor through the wheel speed control loop. Consequently, the spin 
axis inertia of the rotating member can be considered coupled to the float 
only at vibration frequencies below the bandwidth of this control loop; the 
anisoinertia is a function of frequency. Anisoinertia e r ror  torques can 
cause constant vibration-induced drift rates in the individual gyro. The 

drift rate is given by 

1 anisoinertia drift rate = - TI (Iii - Issg) %os 

T 

where 

= rotor and gimbal moment of inertia Iii 
about the input axis 

Issg = gimbal moment of inertia about the 
spin axis 

Issr = rotor moment of inertia about the 
spin axis 

Rotor inertia coupling about the spin axis is represented by the transfer 
function 
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where 

W r  = wheel speed control loop bandwidth 

The expression for the average anisoinertia drift rate is 

3,2.4 Torquer Scale Factor Asymmetry 

This error  is caused by a lack of symmetry in the gain (scale 
factor) relating gyro output to the rebalance torque applied. In a gyro with 

linear rebalance electronics, a sinusoidal angular rate about the input axis 

will cause a mean drift rate of - cW/v i f  the frequency u is within the loop 
bandwidth and the torquer gain for applying positive rebalance moments 
(1 + E) times-that for negative moments. The same drift rate occurs in a 
pulse rebalanced gyro when positive and negative pulses are similar 
equal (see Ref. 1). For the linear gyro the mean drift rate caused by 
scale factor asymmetry and angular vibrations is given by 

mean drift rate caused by 
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3.2.5 Pseudo-Coning 

The cause of this system level e r ror  is the combination of an 
angular vibration correctly measur 
error  from a second gyro. The strapdown 
that it is experiencing coning motion and a system drift rate occurs about 
the third system axis. The major cause of pseudo-coning system errors  
is the sensitivity of the single-degree-of-freedom gyro to angular accel- 
eration about its output axis. This effect provides an error  signal of the 

proper phase to combine with the true motion measured by another gyro, 
giving the erroneous indication of system coning motion. The average 
pseudo-coning error  per gyro pair (of which there are three in each system) 
is 

do 

-bo dv Qro,(v) ]G(v)(2 pseudo- coning - 
drift rate 

0 
H - (3.2-5) 

3.2.6 Undetected System Coning Motion 

If the angular vibration environment contains frequencies beyond 
the gyro bandwidth, the system can experience coning motion which is not 
detected by the gyro. The mean drift rate due to undetected angular rota- 
tion about the system z axis is given by 

0 

Similar expressions can be written for drift a b u t  the x and y axes by 

proper permutation of the subscripts on the quadspectral density function. 
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3.2.7 Linear Vibration Errors  

Unear vibrations can cause e r ror  torques about the output axis 
of an SDF gyro. Compliance in the gimbal and rotor structure is the mech- 
anism for rectifying the effects of linear vibrations to generate constant 
drift rates in the individual gyros, If the structural compliance coefficients 
Kij, relating rotor center of mass displacement in the i direction to accel- 
eration in the j direction, are constant the mean drift rate per gyro is 

linear vibration - - /,"y [Kso *oi(v) + Ksi  *ii(v) (3.2-7) 
0 

drift rate H 

where 
m = rotor mass 

Unfortunately, the compliance coefficients can be f requeficy dependent and 
Eq. (3.2-7) is a very simple representation of linear vibration errors. 
For a more detailed treatment see Ref. 7. 

3,3 SYSTEM DRIFT RATE 

The system drift rate about any axis can be found by referring 
to the gyro orientation and properly summing appropriate drift rate terms 
from Section 3.2. For example, 

33 



meanx-axis system drift rate = 

(3.3- 1) 

Some observations regarding gyro design can be made from Eq. 
(3.3-1)* If 4xy(o) is significant only in a narrow range of frequencies, 
adjusting the wheel speed regulator to provide a constant value of Q(u) 
over that band will permit elimination of the anisoinertia drift rate 
by proper selection of gimbal moments of inertia. All  other errors 
induced by angular vibration are in some way affected by the gyro loop 
response, represented by the expression G(u). Torquer asymmetry and 
pseudo-coning errors  can be diminished by reducing the gyro bandwidth. 
However, at least for the linear gyro, reducing bandwidth will increase 
cmsscoupling errors and will’cause information to be lost (for example, ’ 

there will be more undetected coning motion) 
of the optimum gyro parameters is not a trivial problem and is intimately 

Evidently, determination 
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involved with the model of gyro transfer characteristics. While specifying 
G(u) is easy when a linear rebalance technique is used, most strapdown 
gyros employ pulse torquing. The nonlinear elements in a pulse rebalanced 
gyro complicate the description of transfer characteristics for this type of 
instrument. Consequently, Eq. (3,3- 1) cannot be used in a straightforward 
manner to compute vibration-induced errors  o r  as the basis for selecting 
gyro parameters. The following two sedions of this report outline attempts 
at describing the response characteristics of pulse rebalanced gyros in a 
concise manner that will facilitate calculation of vibration-induced errors. 
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4. BINARY PULSE REBALANCED GYRO 

SUMMARY 

Research Performed - An analytic technique is used to 
predict the behavior of binary pulse torqued gyros. In 
particular, closed loop frequency response character- 
istics are determined for limit cycling delta modulated 
gyros and for instruments employing time modulated 
torquing. Most of the effort is devoted to analysis of 
sensors employing the binary delta modulation rebalance 
technique. For these gyros the effects of interrogation 
period, float time constant and rotor bearing compliance 
are investigated and a gyro simulation is employed to 
verify the behavior predicted analytically . The influ- 
ence of various compensation networks on closed loop 
behavior is also discussed. 

In this section the effect of sampling in the rebalance 
loop is represented as a linear, first order lag in the 
gyro loop. Rotor bearing compliance is modeled in 
terms of a linear, lightly damped spring-mass system. 

Results - Because of the limit cycle usually exhibited, 
the binary gyro is shown to have an essentially linear 
response to sinusoidal inputs. Good agreement is 
observed between the closed loop gain and phase shift 
characteristics determined analytically and those 
observed during simulation. Analytic techniques are 
also shown to accurately forecast limit cycle quenching - 
the situation where the input signal extinguishes the 
limit cycle in a binary gyro, It is demonstrated that 
the effect of sampling on gyro loop behavior can be 
studied in terms of an equivalent first order dynamic 
lag. An analysis is also performed for  a strapdown 
gyro loop employing a time modulation torquing 
technique. It is concluded that this rebalance 
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scheme can provide more flexibility in achieving a de- 
sirable closed-loop gain characteristic. The analysis 
is not checked by a simulation, 

Conclusions Related to Gyro Design.- A tool for ana- 
lyzing binary strapdown gyro designs as demonstrated. 
However, at present it has only been validated for the 
case of sinusoidal inputs. Further work is required 
before the same analytic approach can be used with con- 
fidence to compute vibration-induced strapdown system 
errors,, This technique is not limited to a particular 
set of linear dynamics within the loop and accurately 
predicts what range of input frequencies will be dis- 
torted by the gyro. An uncompensated limit cycling 
binary loop exhibits a frequency response that can be 
closely approximated by a linear, second order transfer 
function whose damping ratio and natural frequency are 
given by Eqs. (4.1-1) and (4.1-2). Unfortunately, the 
damping ratio of the approximate system never exceeds 
one-half, giving high peaks in the closed-loop gain, It 
is demonstrated that the response characteristics of a 
limit cycling binary gyro can be changed by inserting 
linear dynamic compensation between the signal genera- 
tor and the rebalance logic. 

Rotor bearing compliance can have a sizeable effect on 
the closed loop transfer characteristics of a single- 
degree-of-freedom gyro. Stiff rotor bearings must be 
provided to enable a strapdown gyro to realize its full 
potential. Sampling in the gyro rebalance loop also 
lowers the bandwidth and the highest sampling rate 
compatible with other constraints should be used. 

The float time constant affects binary strapdown gyro 
bandwidth. Generally, reducing this parameter raises 
the natural frequency and damping ratio of the approxi- 
mate loop response model. 

Quenching of the binary gyro limit cycle and, consequently, 
destruction of the linear response characteristics of this 
sensor can be accurately predicted. Since prediction is 
possible, a designer 
through proper choice of gyro parameters, 

uld be able to avoid quenching 
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Finally, the time modulated rebalance technique offers 
greater flexibility in adjusting gyro loop transfer char- 
acteristics. 
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4.1 ANALYSIS OF THE LIMIT CYCLDNG B Y G Y  

This section ic  
closed loop transfer charact 
Gyros with second order dy 
between rotor and gimbal are considered in separate sections, Closed 
loop gain characteristics predicted analytically are displayed to illustrate 
the effects of different instrument parameters 

cs of the binary pulse to 
with signific 

Rotor & Gimbal 
Dynamics r .  I T n , , 

Torquer Zero Order  
Dynamics Hold 

H = Rotor Angular Momentum 
C = Float Damping Coefficient 
itg = Torquer Current 

Figure 4 , l -  1 Binary-Torqued Gyro Loop with 
Second Order Gyro Dynamics 

1 illustrates a simple presentation of a bi 

pulse 
as a single rigid body for  angular motion about the gyro output axis. When 
sampling is ignored, the response of the gyro loop illustrated to oscillatory 

o loop. The rotor and gimbal are assumed to behave 

41 



inputs closely approximates that of a linear second order wit 

damping ratio and natural frequency given by (Section 2.4, Ref. 1): 

The linearization of the binary gyro loop is a consequence of the limit cycle 
usually found in a system of this type. Under certain circumstances (dis- 

cussed,in Appendix D) an oscillatory input to the gyro loop can cause the 

limit cycle to vanish. In that case, the closed loop characteristics of the 
binary torqued instrument differ significantly from those presented above. 
When the limit cycle is not quenched, Eqs. (4,l-1) and (4.1-2) can be used 
to study the effect of varying gyro parameters. Figure 4.1-2 illustrates 
the behavior of the closed loop gain as the float time constant is varied. A 
similar comparison could be made of phase shift. Changes in Tf are easily 
made by varying the float damping coefficient, C. 

Effects of Sampling in the Gyro Loop - In the above discussion 
the effect of sampling in the loop has been ignored for the sake of simpli- 
city. The sample and hold operation contributes an additional frequency- 
sensitive phase lag to the open loop dynamics. This can cause the limit 
cycle frequency and amplitude to be different from those experienced in a 
continuous binary gyro loop. Consequently, there is a different value for 
the nonlinearity gain to the signal and the closed loop frequency response 
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Figure 4 , l -2  Closed Loop Frequency Response as a 
Function of Float Time Constant 

The sample and hold transfer function is 

UT 
Sin -r& - j  uT/2 
UT S(ju) = e (4.1-3) 

where T is the sampler period in seconds, If vT/2 << 1 because the 
sampler frequency is much higher than other frequencies encountered in 
the loop, the transfer function is approximately 

1 
S Q V )  2 UT 

l + j T  
(4.1-4) 
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The equivalent closed loop natural frequency and damping ratio given in 
Eqs. (4.1-1) and (4.1-2) can be derived including the effect of the sampler 
lag expressed by Eq, (4.1-4). The resulting relations are given below, 

I 

T 

c3 (4.1-5) n 

I 2 T 
(.f 'tg + Z('f +?go c, f tg + - ( r  2 f + T  tg ) + 

(4.1-6) 

The effect of a finite sampling rate on the closed loop gain is illustrated 
in Fig. 4.1-3 where response curves are shown for  a very high sampling 
frequency and a 10 kc rate, It can be seen that sampling in the gyro loop 
tends to reduce the ueeful bandwidth of the instrument. 
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4.1.2 Gyro Dynamics with Rotor Bearing Compliance 

Dynamics Relating Dynamics Relating 
Gimbal Torque to 

Gimbal Angle 

Figure 4, l -4  Binary-Torqued Gyro Loop when Rotor 
Bearing Compliance is Conside red 

The binary-torqued gyro loop with significant rotor-to-gimbal 
compliance is in many respects similar to that discussed in Section 4.1.1. 

The difference lies in the transfer functions relating torque on the float to 
input angular rate, and float angle to torque (see Fig, 4,l-4). When linear 
rotor bearing compli ce is present, the transfer functions become 

(4.1-7) 
i 

q ( S )  =-H 

(4 e 1-8) 

4 3 2 2 2  3 
1 +4P%S + (24 (1+2p )+ug)s +4py,s+vn 

4 
a0 

Mnet s5 + c 4 s  + 6383 + c2s2+ el* + c() 
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where 

These relations are derived in Appendix I. If the coupling between the 

wheel and gimbal is represented by a linear second order system, p and 
vn are the damping ratio and natural frequency of this system. They 
are computed from the stiffness between the rotor and gimbal, k, a 
damping coefficient, d, and the rotor moment of inertia about input and 
output axes, Ire 

(4.1-9) 
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The float time constant 7f is computed by considering only the gimbal 
moment of inertia about the output axis and output axis damping: 

(4.1-11) 

Since only the linear parts of the loop are changed as a result 
of considering compliance, many of the phenomena seen for simple 
gyro dynamics are again observed, As in Section 4.1.1, the effect of the 

sample and hold operation is neglected until later in this discussion. Due 
to the absence of any phase shift contribution from the nonlinearity, the 
loop still limit cycles at a frequency determined only by the phase char- 
acteristics of the linear part of the open loop. As before, the limit cycle 
"linearizes" the nonlinearity with respect to a signal circulating in the 

loop. Unfortunately, the closed loop signal transfer characteristic can 

no longer be approximated by that of a second order system. 

The limit cycle analysis of the loop under discussion is more 
difficult than when simple gyro dynamics are considered. Here, the linear 
open loop transfer function H(s) has seven poles, instead of three. 

(4.1- 12) 
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where C4, C3, C2, C1 and C, are defined above. It is observed that the 
phase condition for a limit cycle, LH(j w )  = - 180°, occurs at several fre- 
quencies. The limit cycle frequencies can be computed numerically as 
the positive real root(s) of a polynomial which is derived from this con- 
straint e 

where 

yo 4 ECo 

y2 4 (DCo - EC1)?@ + DC1 - EC2 - CC, 

= A (CC1 + EC3 - BCO - DC2)7tg + EC4 + CC2 + Co - DC3 - BC1 
y4 

76 = A (BC2 + DC4 - C1 - CCS - E)?@ + D + BC3 - CC4 - C2 

4 (C + C3 - BC4)7tg + C4 - B '8 

A Y1* = 

B ,e 4 p ~ n  

2 2  2 c 2vn (2p + 1 ) +  og 

4 4 4  

E v4 
n 
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In general, there can be as many as five positive, real solutions to Eq. 
(4.1- 14), each corresponding to a different qlcrossover frequency" where 
the linear, open loop phase lag is 180'. Stability analyses are applied to 
discard certain solutions of Eq, (4.1-14). In general, if the five solutions 

, @15), the stable limit are ordered by ascending frequency (UJ~, c d ~ ~ ,  

cycles correspond to the frequencies with odd numbered subscripts (ql, 

0 . .  

*l3' WJ5)' 

For each stable limit cycle there is a different limit cycle amp- 
plitude, corresponding to a different gain, Ng, of the nonlinearity to signal 
inputs. Because the closed loop frequency response to an input depends on 
NB there can be as many as three different sets of transfer characteristics, 
each resulting from a different limit cycle, Figure 4,1-5 shows two closed- 
loop gain responses obtained for a system with two stable limit cycle modes 
( W J  = 727 Hz, 868 Hz). Although the limit cycle frequencies differ signifi- 
cantly, the two responses are quite similar. Appendix G discusses the fact 
that exciting the gyrc loop with a particular input at certain frequencies can 
cause the limit cycle to change, with a resultant shift to a different frequency 
response. The system whose closed loop is shown in Fig, 4.1-5 can be 
shifted from the 727 Hz limit cycle mode to the 868 Hz mode by excitation 
with a 0 , l  rad/sec amplitude angular rate input at 810 Hz o r  above, How- 
ever, it cannot be shifted back to the 727 Hz mode in a corresponding manner. 

Two effects - finite sampling frequency and limit cycle quench- 
ing - remain to be discussed in connection with binary ~OOF(S containing 
rotor-to-gimbal compliance. It was shown in Section 4.1.1, that the 
sample and hold operation introduces a lag which can be approximated by 
the transfer function 1/(1+ jvT/2) where T is the sampler period. This 
causes a modification of the limit cycle frequency and amplitude, changing 
the nonlinearity gain to the signal and altering the closed loop response. 
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The effect of sampling on a gyro with significant com 
and gimbal is illustrated in Fig. 4.1-6. Two analytically d 

quency response curves are sho ; one for a high s 
(T 2 0) and the other for a 10 ate, Limit cycle quenchi 
effect on the performance of ro loop discusse 
treated in Appendix I). 

4.~2 SIMULATION OF THE LIMIT CYCLING BINARY GYRO 

The analyses of Section 4 , l  provide interesting insights into 
the closed loop behavior of the binary torqued gyro. The accuracy of 
these predictions depends on how well the describing function linearization 
characterizes the true nonlinearity response to a signal in the presence 
of a limit cycle. A s  a check on this approach, typical gyro loops were 
analyzed by the methods discussed in Section 4.1 and were then simulated 
on an analog computer to verify the gyro transfer characteristics predicted 
analytically. 

4.2.1 Simple Gyro Dynamics 

A binary gyro loop was examined analytically and by analog 
simulation. The dynamic characteristics of the linear portion of the gyro 
were identical with those presented in Fig. 4.1-1. Details of the simula- 

n in Appendix F. The important gyro parameters for this 
comparison are: 

H = 2 x lo5 dyne-cm-sec 

7f = 0,0025 sec 

7tg = 0.0001 sec 
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Figure 4.2- 1 displays simulation records of the binary gyro 
float angle and torquer output in the absence of an input angular rate. A 

very high sampling rate (1  mHz) was used. The limit cycle observed was 
in close agreement with that predicted for a continuous loop. 

t+ 
dyne- 

(a) Torquer Output, Mtg 

. . . . .  

(b) Float Angle, a0 

cm 

Figure 4.2- 1 Simulation Records for Limit-Cycling 
Binary Gyro 
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An oscillatory angular rate with a peak amplitude of 0.1 rad/sec 
was applied to the gyro loop, Figure 4,2-2 and 4.2-3 display simulation 
records of gyro input, float angle and torquer output for two values of input 
frequency. Again, an essentially continuous loop was considered. It can 
be seen that for a low frequency input the gyro float angle follows the input 
very closely, despite the simultaneous presence of a limit cycle oscillation. 
At a higher input frequency, however, it is more difficult to identify signal 
and limit cycle effects separately, The closed loop frequency response 
predicted analytically for this system is seen in Fig. 4.2-4, together with 

points obtained by simulation. There is a good agreement between the two 
techniques , 

Figure D-2 of Appendix D indicates that, for an input amplitude 
of 0.1 rad/sec, the limit cycle seen in this system is quenched over a 
range of frequencies above 200 Hz. Accordingly, the analytically derived 
response has been corrected over this frequency range to show a flat- 
topped peak characteristic cf the binary system when the limit cycle is 
quenched. In this region the system output is a square wave at the input 
frequency with amplitude equal to the nonlinearity drive level. This level 
is equivalent to 1 rad/sec input rate and the fundamental component of the 
output has an amplitude of 4/n = 1.273 rad/sec. Since the input amplitude 
is 0-1 rad/sec, gain of the closed loop is a constant value of 12.73. More- 
over, all information about the input signal amplitude (except that it is 
large enough to extinguish the limit cycle) is lost, and the gyro loop ceases 
to function as a linear system, Limit cycle quenching can represent a 
definite restriction on the range of the amplitudes and frequencies that can 
be accurately detected by a binary gyro. However, quenching is not com- 
mon at frequencies well below that of the limit cycle. 
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Figure 4.2-2 Binary Gyro Simulation: 20 Hz Input 
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Figure 4.2-3 Binary Gyro Simulation: 165 Hz Input 

Sampling - Simulations were also conducted for the binary limit 
cycling gyro with significant sampling lags. Figure 4.2-5 shows the fre- 
quency response for a loop with lo4 samples per second. It differs notice- 
ably from that shown in Fig, 4.2-4. The solid line indicates the response 
computed using describing function theory and simulation points obtained 
are also shown, Good agreement between analysis and simulation is indi- 
cated, 
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4.2.2 Gyro Dynamics with Rotor Bearing Compliance 

Section 4.1.2 discusses the changes made to the gyro model 
when rotor-to-gimbal compliance is assumed to be significant. For the 
purpose of comparing analytic and simulation results, the following set 

of gyro parameters was employed: 

0 g = 4000 rad/sec 
vn = 2512 rad/sec 
p = 0.02 

The frequency response predicted analytically for this system is shown in 
Fig. 4.2-6, along with points obtained by simulation. Good agreement is 
observed between the two methods except near the frequencies at which 
limit cycle quenching takes place. A small hysterisis region, not pre- 
dicted by the analysis, is observed in the simulation for input frequencies 
near the first (low frequency) quenching region. The other quenching 
region, occurring at frequencies near that of the limit cycle, is not accur- 
ately described by the analysis. This error  in determining quenching is 
thought to be caused by beat frequency terms not considered in the describ- 
ing function approach used. It can be seen from the figure that the analysis 
provides adequate estimates of the general frequency range for quenching 

ves an excellent prediction of the low frequency portion of the gyro 
loop response. Comparison of Figs. 4.2-4 and 4,2-6 indicates that, for 
the parameters chosen, mtor bearing compliance reduces the useful 
bandwidth of the gyro. Since the low frequency peak in Fig. 4.2-6 is 
caused by the compliance, greater bearing stiffness would help to alle- 
viate this effect. 
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~ N S A T I ~ N  FOR THE LIMIT CYCLING BINARY GYRO 

a The binary gyro loop .limit cycles whether or not 
at the input (unless the signal is of high enough 

erty, the closed loop frequency response to an 
termined by gyro and torquer time constante and 

de or  suitably shaped to quench the limit cycle). As a consequence 

not by easily m ~ p u ~ t e d  electrical gains (see Section 4.1.1). Specifically, 
i f  the loop is linearized using describing function techniques, a response 
c h a r a c ~ e ~ s ~ c  approximately that of a second order system can result with 

d damping ratio given by Eqs. (4.1-1) and (4.1-2). 

ese ~requency response characteristics cannot be changed without making 
difications to change Tf and 7% 

e in order to permit high s 

general, 7t@; is made as 
ng rates. Also the float 

e c o n s t ~ t  is related to gyro noise effects through the damping coeffi- 
cient , ping reduces gyro resolution and increases the 
effect of electrical noise in the pickoff . In addition, no reasonable choice 
of the time constants can make the damping ratio greater than 1/2. Thus, 
the frequency response is forced to have a peak near the natural frequency. 

ency sensitive compensation may be desired to remove 
generally, to permit control of the frequency response 
ut changing 7f and 7%. 

- Following the approach used to obtain Eqs. (4.1-1) 

resent the effective gain of the binary nonlinearity to 
a sinusoidal signal by the Two Sinusoid Input Describing Function (TSIDF), 
written NB(A,B). This describing function is the ratio of the amplitude of 
the s i g ~ ~ f ~ ~ u e ~ c y  harmonic at the nonlinearity output to the amplitude 

soid (limit cycle) of 
nsidered small eom- 
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(4.3- 1) 

where D is the drive level of the nonlinearity. Appendix C examines in 
greater detail the conditions under which this approximation holds. 

In attempting to compensate the limit cycling binary loop, we 
must consider the effect of the limit cycle on the total open loop gain and 
phase performance as seen by the signal sinusoid, The binary nonlinearity 
TSIDF gain to the limit cycle, written N*(A, B), is given by 

B << A (4.3-2) 

The complex open loop transfer function of the linear part of the loop is 
written Hew). The definition of the limit cycle requires that, at the limit 
cycle frequency , q9 

H(jMh) NA(A,B) = 1 /-180° (4.3-3) 

The limit cycle amplitude A and frequency q, adapt to maintain this equal- 
ity regardless of the compensation introduced. From Eqs. (4.3- 1) and 
(4.3-2), it can be seen that 

NA(A,B) %NB(A,B); B <<A 

Substituting for NA in Eq. (4.3-3) yields 

H(jO$) NB(A,B) = /180° 

(4.3-4) 

(4.3- 5) 
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Here, H(ju4) NB(A,B) is the expression for the complex open loop gain as 
seen by the signal sinusoid. We conclude that, due to the adaptive proper- 

cycle amplitude and frequency, the open loop gain and 
en by the signal sinusoid will always be 1/2/-180" at (04. 

e used to investigate in-loop compensation of 
binary pulse torqued gyros makes use of the rectangular gain-phase plot 
(Nichols chart). The open loop gain and phase characteristics are plotted 
as a function of frequency. On the same plot, lines of constant M (closed 
loop amplitude ratio) are constructed. The closed loop amplitude ratio 
for any sinusoidal input is the value of M intersected by the open loop 
gain-phase curve at the same frequency. The M =  1 line represents the 
desired unity closed loop gain. Figure 4.3- 1 shows the M = 1 line and the 
open loop gain-phase curve of the uncompensated gyro loop with the follow- 
ing parameters: 

% = 1 0 - 4 s ~ ~  
Tf* =* 2.5 x sec 

phase curve cuts through high closed loop gain lines at 
WQ, producing a pe d frequency responSe. 

In Section 4.1 torquer lag was neglected to allow approximation 
of the uncompensated binary gyro loop by a second order linear system. 
This represe of the gyro is adequate for computing closed loop gain 

and phase shift characteristics at low frequencies. However, the torquer 
begins to contribute open loop phase shift at frequencies below the limit 

a significant difference between the open loop gain-phase 
plots of the approximate (second order) and more complete gyro models. 
Consequently, the peak closed loop gain calculated using a second order 
approximation to the gyro loop is always less than the true value. 
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Figure 4.3-1 Open Loop Gain-Phase Plot for 
Uncompensated Binary Gyro 

In order to obtain unity closed loop gain at all frequencies below 
the limit cycle, we must’make gain and phase changes to the open loop 
which cause the compensated gain-phase curve to coincide with the M = 1 

line. As discussed earlier, the complex open loop gain must always be 
1/2 /- 180° at the limit cycle frequency, wfi; the gain-phase curve always 
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crosses the -180' phase shift line with a gain of 1/2 at wa whether o r  not 
compensation is used. It can be seen from Fig. 4.3- 1 that the M = 1 line 
also intersects the -180° line at 1/2, Four sets of linear dynamic compen- 
sation schemes are discussed below. In each case the compensation is 
assumed to be placed in the forward signal path as illustrated in Fig. 4,3-2, 

The closed loop gains for gyros employing various compensation schemes 
are shown in Fig. 4.3-3. 

Binary 4 H M o a t H  Generator signal Compensation Nonlinearity 
L 

Figure 4.3-2 Position of Binary Gyro 
Loop Compensation 

From Fig. 4,3- 1 it can be seen that the linear compensation 
necessary to provide an open loop gain-phase characteristic which coin- 
cides with the unity closed loop gain curve must provide rapidly increasing 
phase lag with little change in amplitude ratio at frequencies immediately 
below WA. A resonant second order system provides rapid changes in phase 
shift but gives a sharp amplitude ratio peak. By cascading such a system 
with a first order lag to reduce the gain peak, it was hoped that the desired 
gyro open loop characteristics could be achieved. For the gyro parameters 
postulated, this form of compensation produces both amplification and at- 
tenuation in the critical range of frequencies, w < w ~ .  Departure f mm 
unity closed loop gain is not desirable at any frequency. Large amplification 
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in particular is associated with limit cycle quenching. In view of the fact 
that this compensation scheme cannot produce a perfectly flat response, 
the best course of action is to choose a set of compensation parameters 
which will minimize the maximum deviation of any part of the closed loop 
response from unity gain. The values used to get the response shown are: 

resonant natural frequency = 159 Hz 
resonant damping ratio = 0.03 
lag time constant = 3.3 x 10-4 sec 

The resulting closed loop response has a maximum gain of approximately 
1.29 at 48 Hz and a minimum gain of about 0.80 at 100 Hz with a limit 
cycle frequency of 126 Hz. (The uncompensated gyro gain has a peak of 
about 7.5 at 230 Hz and c”]a= 318 Hz. 1 The decrease in limit cycle frequency 
as a result of compensation is unavoidable. Since this form of compensa- 
tion adds open loop phase lag, u~ is lowered and the unstable bandwidth is 
always decreased when the binary limit cycling loop is compensated in this way. 
Also, because of the nature of binary torqued gyro loops, the limit cycle 
amplitude increases, 

Another attempt to reduce variations in the closed loop gain 
uses a lead-lag-lag-lead network to generate the abrupt open loop phase 
shift required. The network transfer function is 

(sa7, + 1) ( s z  + 1) 
(STC + 112 

; a ! > l  

The parameter a is chosen to be 20, Selection of Tc = l / u ~  causes the 
compensation to produce no phase shift at 04. Thus, the limit cycle fre- 
quency is unchanged, 
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Figure 4.3-3 Closed Loop Gain for Limit Cycling 
Binary Gyro: Effect of Loop 
Compensation 

If it is desired to increase the useful bandwidth of the loop with- 

out attempting to significantly alter the peak gain, lead-lag compensation 
is effective. A compensation network with the following transfer function 
was used to get the response illustrated in Fig. 4.3-3. 

$017~ + 1 01 = 20 
; T~ = 0.00005 sec 
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Integral-Bypass Compensation - The motivation for using inte- 
gral bypass compensation is to reduce the average low frequency float 
angle (taken over one o r  more limit cycle periods}. Specifically, it is 
desired to use compensation at the nonlinearity input which approximates 
a pure integrator for low frequencies, thus giving the open loop a double 
integration characteristic for constant inputs . When the additional inte- 
gration is inserted in the loop, the average float angle is zero for a con- 
stant input, This 5ompensation also reduces the float angles caused by 

low frequency inputs , 

++ 
-t 

ei 

K 
S 
- 

Figure 4.3-4 Block Diagram for Integral- 
Bypass Compensation 

Integral-bypass compensation (see Fig. 4.3-4) has the transfer 
function 

s + K  
S 

At low frequencies the transfer function is approximately K/s, while at 
high frequencies the compensation has unity gain, no phase shift and does 
not influence the loop response. The effect of integral bypass cornpensa- 
tion is seen in Fig. 4.3-5 as a bending of the open loop response towards 
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Figure 4.3-5 Nichols Chart Showing the Effect of 
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Open Loop Response 
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the -180' phase line at low frequencies'. Increasing K broadens the 

frequency band where the co 

Note that a value of K as high as 10 has 
frequency or  the closed loop response near wg. For values of K s 10, 

integral bypass compensation reduces the average float hangoff from low 
frequency inputs and leaves the closed loop response and limit cycle es- 

sentially unchanged. 

range over which float motion i 

Conclusions - The value of compensation in the limit cycling 
binary gyro loop has been studied analytically. Two forms of compensa- 
tion which reduced the peak closed loop gain gave poor loop behavior at 
low frequencies. A third form of compensation, introducing lead into the 
gyro loop, increased the bandwidth of the gyro loop. Integral compensa- 
tion was  investigated as a means for stiffening the response of the gyro 
float to low frequency inputs. The investigation conducted was  exploratory 
in nature and no consideration was given to the practical aspects of im- 
plementing the compensation schemes proposed. 

4.4 LINEAR ANALYSIS OF THE DITHERED BINARY GYRO 

The addition of a dither signal to the nonlinearity input of a 
binary torqued gyro can be used to create an approximately linear relation 
between the gimbal angle, q,, and the gyro output (see Ref. 1). Also, i f  

attenuation of the dither oscillation by float dynamics is large enough, the 
dither nonlinearity can be represented as a limiter as shown in Fig. 4.4-1. 

Linear feedback analysis techniques can be used to investigate the transfer 
p illustrated over a wide range of amplitudes and 

limiting nature of new representation for 
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the dithered binary nonlinearity raises the possibility of a no-input limit 
cycle in the rebalance loop. Careful consideration reveals that the poten- 
tial limit cycle in the dithered gyro is essentially the same unforced 
oscillation that occurs in any simple binary loop, Using the block diagram 
of Fig. 4.4-1, it can be seen that any limit cycle must have a frequency 
which provides 1~ radians of phase lag in the linear part of the loop; the 
nonlinearity shown provides no phase change. The sinusoidal describing 
function for the limiter, NA, is illustrated in Fig, 4.4-2. Peak gain 
occurs when the input sinusoid has an amplitude smaller than the dither 
magnitude, Ad. In that case the describing function is a constant, D/Ad, 
where D is the torquer current level. For a limit cycle to exist, the fol- 
lowing relation must be satisfied 

For the gyro model illustrated the oper 
quency is; 

= 1  (4.4- 1) 

loop gain at the limit cycle fre- 

(4.4- 2) 

Consequently, to prevent a limit cycle the dither amplitude must be chosen 
so that 

(4.4-3) 

If the dither frequency attenuation by the float is sufficient (validating the 
representation of the nonlinearity shown in Fig. 4.4- 1) and Eq. (4.4-3) is 
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satisfied, the application of dither at the input to the binary nonlinearity 
will prevent the occurrence of a limit cycle. Analysis of the dithered gyro 
loop for a wide range of inputs can then proceed using techniques developed 
for linear feedback systems. 

Float Dynamics 

I Torque Generator I 

Figure 4.4-1 Dithered Binary Gyro 

NA 

A 

Figure 4.4-2 Describing Function for the Limiter 
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Example - Consider a single-degree-of-freedom gyro with the 
following parameters: 

bo = 250gm-cm2 
Kt8 = 1200 dyne-cm/mA 
H 

C 

Ksg 

= 2 x 105 gm-cma/sec 
= 1 x lo5 dyne-cm-sec 
= 20mv/mrad 

C3imax= DKtg/H = 1 rad/sec 

Using Eq. (4.4-3), the minimum dither amplitude to preclude a limit 
cycle is 3.84 mV and the slope of the linear portion of the nonlinearity, 
K1 = D/Ad, is 43.2 mA/mV. The natural frequency and damping ratio of 
the linearized gyro loop (ignoring torquer dynamics) are 

K K K  
sg = 325 Hz 

IO0 
% =  

(e  4-4) 

Figure 4.4-3 illustrates the resultant frequency response for the linearized 
loop. For purposes of comparison the frequency response of a limit cycling 
binary gyro with the same parameters is shown. In interpreting the curve 
shown it should be remembered that for the dithered binary gyro no oscilla- 
tion faster than half the dither frequency can be accurately detected at the 
gyro output. This is a consequence of averaging over each dither cycle. 
As the dither amplitude is increased above the minimum value required 
to prevent a limit cycle, K1 decreases. From Eq. (4.4-4) it can be seen 
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that the natural frequency of the linearized gyro decreases and its damping 
ratio increases when Ad is made larger, The amplitude ratio frequency 
response for the dithered gyro is also shown in Fig, 4.4-3 for the case 
where dither amplitude is twenty-five times the minimum value computed 
above. Note the difference from that achieved by the limit cycling gyro. 
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Limit Cycle (un = 325 Hz, = 0.048) 

Limit Cycling Binary 
Torqued Loop 
(un = 240 Hz, = 0.135) 

Binary Loop with 25 Times Minimum Dither 
(wn = 65 Hz, < = 0.5) - 

1 10 100 1000 
Frequency, (Hz ) 

Figure 4,4-3 Frequency Response Characte ristics 
for Binary Rebalance Loop 

When the dithered binary gyro is represented as illustrated in 
Fig. 4.4-11 the frequency response characteristics of the second order 
linearized rebalance loop can be controlled by varying dither amplitude. 
However, damping ratio and natural frequency cannot be controlled 
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independently, Any increase in damping ratio (increase in dither ampli- 
tude) necessarily implies a decrease in natural frequency. In the example, 
the entire range of desirable loop transfer characteristics (un and 5 )  can 
be generated using dither signals large enough to preveat a limit cycle. 
Considerably more design flexibility is available with the dithered binary 
gyro. In addition, the interdependence of peak closed loop gain and band- 
width can be eliminated through insertion of linear compensation in the 
loop. The whole range of linear systems techniques is available for ana- 
lyzing the dithered loop. 

The use of a dither signal with a ternary nonlinearity offers no 
advantage relative to the technique discussed above. 



5. TERNARY PULSE REBALANCED GYRO 

SUMMARY 

Research Performed - The behavior of ternary pulse 
torqued gyros is predicted analytically. A major por- 
tion of the effort is devoted to determining the closed 
loop gain characteristics of ternary gyros and verify- 
ing the analysis by simulation. The influence of rotor 
bearing compliance is also analyzed and the predicted 
gyro response is checked by simulation. The effects 
on the ternary gyro frequency response of different 
gyro input amplitudes and random noise at the logic 
inputs are also treated. 

Results - It is demonstrated that the closed loop be- 
havior of ternary pulse rebalanced gyros can be accur- 
ately predicted. The gain and phase characteristics 
observed during simulation are in close agreement with 
those computed analytically. 

It is shown that the ternary pulse rebalanced gyro can 
exhibit a jump resonance in its closed loop response to 
sinusoidal inputs. This history-dependent gain and 
frequency shift is observed in both the analysis and the 
simulation. In addition, analysis indicates that the gyro 
has a transfer characteristic which can depend greatly 
on the amplitude of the input signal; the ternary gyro 
loop transmission is nonlinear, The latter property 
was not thoroughly checked by simulation but enough 
confidence has been gained in the analytic technique that 
the conclusion is considered to be correct. 

The effect of rotor bearing compliance on the ternary 
gyro loop response is similar to that found for the bi- 
nary gyro. Both analysis and simulation indicate that 
bearing compliance can reduce the useful bandwidth of 
the gyro. Good agreement between the two approaches 
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is observed, verifying the utility of the analytic techni- 
que. The addition of Gaussian noise to the signal rep- 
resenting float angle is analytically shown to create a 
more nearly linear transfer characteristic in the ternary 
gyro, 

Conclusions Related to Gyro Design - It is demonstrated 
that the characteristics of ternary pulse rebalanced 
gyros can be predicted analytically. However, consid- 
erably more effort is required than for the binary gyro. 
No simple set of equations permits quick calculation of 
ternary gyro response. There is no limitation on the 
complexity of the linear gyro loop dynamics which can 
be treated by this approach. 

Non-unique closed loop gains are predicted and observed 
for the ternary gyro, indicating that this instrument 
can exhibit an ambiguous response for inputs in a cer- 
tain frequency range. In addition, analysis indicates 
that in a large band of input frequencies the ternary 
gyro loop gain depends on the input amplitude. These 
two observations suggest that a ternary pulse rebalanced 
gyro should not be used where high frequency angular 
vibrations must be measured accurately. As with the 
binary gyro, rotor bearing compliance can reduce the 
bandwidth of the ternary gyro. 

Analysis indicates that the presence of random noise 
in the signal representing float angle can cause the 
ternary gyro to behave i n  a more linear fashion. How- 
ever, the technique employed in the analysis does not 
permit phase shift characteristics to be specified. 
Further investigation is required before a random 
noise (dither) is intentionally added in the signal elec- 
tronics of a ternary gyro to give a better response. 



Introduction - Describing function analysis was shown to be of 
considerable value for treating the binary gyro in Section 4. Similar 
techniques are applied below to the ternary gyro of Fig. 5.1-1. Though 

the approach is basically the same, the effort involved is greater. Again, 
in order to simplify the problem the sampling nature of the pulsed gyro. 
loop is ignored, 

6= dead-zone threshold in mV 
D = drive level in mA 

Figure 5.1-1 Gyro Pulse Rebalance Loop 
with a Ternary Nonlinearity 

5.1 ANALYSIS OF THE FREQUENCY RESPONSE 
CHARACTERISTICS OF THE TEmARY GYRO 

As in Section 4, we desire to make approximations which will 

permit application of linear analysis techniques for determining the closed 
loop response to sinusoidal inputs. With the binary gyro, the presence of 
a limit cycle allowed us  to approximate the describing function gain to a 
signal sinusoid by a quantity which depends only on the limit cycle amplitude 

79 



The closed loop frequency response to the signal was then determined by re- 
placing the nonlinearity with the appropriate gain and applying conventional 
linear analysis techniques. Unfortunately, the ternary gyro does not exhibit 
a clearly defined limit cycle and the describing function gain of the three 
level nonlinearity must be treated as a function of the amplitude of the signal 
entering it. Also, because the float provides frequency dependent attenua- 
tion, the amplitude of a sinusoid entering the nonlinearity is a function of 
both the magnitude and frequency of the gyro loop input. Consequently, a 
different size sinusoid appears at the input of the nonlinearity for each 
frequency and amplitude combination applied at the loop input. Ror 
each input combination explored in the course of a frequency response ana- 
lysis ,  a different nonlinearity equivalent gain must be calculated and a sep- 
arate determination of system output amplitude made--all to obtain one 
value of closed loop gain. To simplify matters in the example which follows, 
the input amplitude is held constant and only the frequency varied to obtain 
a_p?ot of closed loop gain. However, it should be emphasized that a different 
curve will result frorr, each value of input amplitude assumed. 

Linearization of the Ternary Nonlinearity - The gain approxima- 
tion used to describe the ternary nonlinearity is the Sinusoidal Input Des- 
cribing Function (SIDF), written NA(A) and defined as the ratio between the 
amplitude of the fundamental sinusoid at the nonlinearity output and the 

amplitude A of the pure sinusoidal input to the nonlinearity. NA(A) is 
evaluated from: 

(5.1-1) 

It should be noted that the SIDF gain relates only to the first harmonic of 
the waveform at the nonlinearity output. All  higher harmonics are ignored. 
They are assumed to be attenuated when passed through torquer and float 
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dynamics. The assumption that the higher harmonics are removed by low 
pass elements in the loop is generally correct when treating that portion of 
the output signal reaching the nonlinearity input, Consequently, the closed 
loop analysis is not invalidated by ignoring higher harmonics at the output. 
However, high frequency signals do exist at the gyro output and will enter 
the direction cosine calculations. The frequency response curves obtained 
in this section account only for the first harmonic of the gyro loop output. 
The signal entering the nonlinearity is essentially the sum of the output funda 
mental and the loop input signal, both filtered by float dynamics. The 
sampling nature of the nonlinearity is ignored in the analysis which follows. 

Analysis Example: Simple Gyro Dynamics - The gyro loop is 
divided into two parts (see Fig. 5.1-2) each of which will be treated sep- 
arately to obtain certain characteristics. Then the two similar sets of re- 
lations are compared to obtain a simultaneous solution for the system. The 
technique is malogous to load line solutions in electrical engineering,, Linea 
analysis is applied to the portion of the system shown in Fig. 5. I-2a. If 

q is a sinusoid of known magnitude, an amplitude relation can be obtained 
between two sinusoids of the same frequency as the input, one at point a 
and the other at point b, This ratio results from linear theory and does not 
depend on the specification of an open loop gain relation between the signals 
ea and eb (see Appe 
defines an ellipse for each different amplitude and frequency of the input 
sinusoid, I€ the input magnitude is assumed constant, a set of ellipses, 
illustrated in Fig. 5 , l -3 ,  results. Each ellipse represents a different input 
frequency. 

E). When plotted for a particular gyro, the relation 

The ternary nonlinear element is treated separately (see Fig. 

5. 1-2b). The describing function, Eq. (5.1-1), is used to obtain a relation 
similar to that computed from linear system theory, This characteristic, 
illustrated in Fig. 5.1-4, depends on the quantities D and 6 . When the plots 
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(b) Nonlinear Element 

Figure 5.1-2 Pulse Rebalance Loop Divided into 
Linear and Nonlinear Parts 
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representing the two parts of the loop tare superimposed in Fig. 5.1-5, 
the intersections constitute a set of operating points for the system. 
Since each ellipse represents a different loop input frequency, each inter- 
section with an ellipse represents a loop operating point at that frequency. 
Every intersection point also supplies a particular value for the nonlinearity 
output. Since the output of the nonlinearity is also the loop output, the 
absolute value of the loop transfer function is simply % divided by the input 
amplitude. The ratios obtained for the ellipse of a particular frequency, 
V, represent possible closed loop system gains to a sinusoid at that fre- 
quency. However, not all of the intersections represent stable solutions, 

Figure 5, l -4  Output vs  Input Computed from 
the SIDF Gain for the Nonlinearity 

By determining a sufficient number of intersection points, it is 
possible to construct a closed loop amplitude ratio response curve for the 

ternary gyro. Figure 5.1-6 illustrates such a curve drawn from the inter- 
section points determined in Fig. 5,l-5. The peaked portion of the closed 
loop response curve exhibits a jump resonance" characteristic similar to 
that given by a softening spring. The effect of deadzone on the closed loop 



gain is seen as an abrupt drop to zero at the frequency vCe If there was 
no deadzone, the response gain would f a l l  off gradually with increasing 
frequency. However, the deadzone causes the relay to block all signals 
whose amplitude at the nonlinearity input is less than 6, A s  frequency in- 
creases, the float gain decreases until, at frequency vc, input amplitude 
at the nonlinearity input is less than 6. Then the output, and consequently 
the loop gain, drops abruptly to zero. Deadzone also causes the overhang- 
ing nature of the response curve. At  high input frequencies, attenuation 
by float dynamics prevents the input to the nonlinearity from exceeding 6, 
As frequency is decreased the float angle eventually becomes larger than 
the deadzone, providing a loop output and generating signals at all points in 
the loop, This occurs at a frequency different from vc because the gyro 
is essentially an open loop system until an output appears at the nonlinearity. 

Figure 5 , l - 5  Superposition of Figs. 5.1-3 and 
5.1-4 Showing Intersection Points 
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Figure 5.1-6 Ternary Gyro Closed Loop Gain 

Effect of Input Amplitude - Because the nonlinearity it contains 
has an amplitude dependent output, the ternary gyro loop exhibits amplitude 
dependent characteristics, When plotted for different magnitudes of the 
input sinusoid, the frequency response curves have various shapes (see 
Fig. 5.1-7). If the input amplitude is small enough (0.01 rad/sec in the 
figure) the closed loop response has no peak. As the size of the input 
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Figure 5.1-7 Effect of Input Amplitude on 
Closed Loop Gain of a Repre- 
sentative Ternary Gyro Loop 
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increases the jump resonance characteristics and dual gain cutoffs dis- 

cussed above become more pronounced. A look at Fig. 5.1-5 provides 
an explanation. The ellipsoidal curves obtained from linear analysis are 
changing size and rotating. As frequency increases, the length of the 
major axis first increases, then declines. However, rotation of the major 
axis is monotonic. For the smallest input amplitude plotted in Fig. 5.1-7 
no appreciable rotation of the ellipses takes place before the loop output 
drops to zero. When the gyro input is raised to 0.03 rad/sec the ellipses 
rotate and the intersection points occur at higher values of %, giving a 
peaked loop response. When the largest input is analyzed, the ellipses 
not only rotate but also become long enough to provide several intersection 
points at some frequencies. A jump resonance characteristic results. 
The fact that ternary gyros have a gain which depends on the input amplitude 
is a serious disadvantage for this type of instrument. If it is necessary 
to accurately measure high f requency angular vibrations, the ternary pulse 
rebalanced gyro does not appear satisfactory, 

Gyro Dynamics when Rotor Bearing Compliance is Considered - 
The loop with rotor-to-gimbal compliance is treated in the same manner 
as that with simple dynamics discussed above. Ellipses are generated to 
describe the linear part of the loop using the equations in Section 4.1.2, 

The SIDF gain for the nonlinearity remains unchanged. Points of inter- 
section between the ellipses and the nonlinearity input-output characte ris- 
tics define the loop output amplitude as a function of frequency. From 
this information, the closed loop gain to a sinusoid is inferred. Consider- 
ation of rotor bearing compliance does not change the basic procedures 
followed in obtaining the closed loop frequency response from describing 
function analysis. 
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5.2 SIMULATION OF THE TERNA 

faithfully the describing function approximation characte rines true non- 
linearity performance. As a check on the vali 
acteristics of certain ternary loops were computed and the results verified 
using analog computer simulation. 

of this approach, char- 

5.2.1 Simple Gyro Dynamics 

A set of parameters is chosen to represent a typical ternary 
gyro loop with second order gyro dynamics (see Fig. 5. 121): 

= 0,00005 sec 

= 4.17 x lom5 rad about the 
?t9 = 1 rad/sec 

= 0.00125 sec 
uimaur ~ 

Tf 6 
input axis 

H/C = 1 

With the exception of the nonlinearity deadzone 6, these are the same 
values as those shown in Fig. 5.1-7. A different value of deadzone was 
used for this comparison to ensure that no limit cycle took place in the 
simulated gyro loop. Oscillatory angular rate inputs with a peak amplitude 

d/sec were applied to the simulated gyro. Figures 5.2- 1 and 
input, float angle and torquer output when two 

encies were simulated. The sampling rate 
in both cases illustrated is 1 mHz providing essentially continuous ternary. 
loops, The closed loop frequency response of this gyro is distinguished by 
a peak at 400 Hz (see Fig. 5.2-3). Discrete points obtained via simulation 

ed while the curve predicted by describing function analysis 
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Figure 5.2-1 Ternary Gyro Simulation Records: 
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(a) Input Angular Rate, wi 
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Figure 5.2-2 Ternary Gyro Simulation Records: 
150 Hz Input 
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Figure 5.2-3 Frequency Response of a Ternary Gyro: 
Comparison of Analytic and Simulation 
Results 
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Figure 5.2-4 presents simulation records illustrating the behavior 
of the ternary gyro float angle at a jump resonance point, The input fre- 
quency is being raised so tsZowly that the change cannot be detected on the 
record, but the gyro float angle behavior shows a clear discontinuity. The 
gain of the gyro loop was observed to increase suddenly at the point where 
a0 becomes larger. 

(a) Input Rate, ' ~ i  

(b) Float Angle, a. 

9 
L 
0.1 rad/sec 

+ 

Figure 5,2-4 Ternary Gyro Simulation Record 
Illustrating Jump Resonance 
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5.2.2 Gyro namics with Rotor-b-Gimbd Compliance 

The same gyro discussed in Section 5.2.1 is treated here €or 
the case where compliance between the rotor and gimbal are significant. 
The parameters related to compliance are: 

o = 4000 rad/sec 
Un = 2512 rad/see 
p = 0.02 

g 

The float time constant, Tf, is not the same quantity when the rotor and 
gimbal are not rigidly connected. The value Tf = 0.001 see was used. The 
frequency response curve for this system has a peak centered near I80 He 
as shown in Fig. 5.2-5. The solid line represents the analytic solution and 
simulation results appear as discrete points. As before, certain points in- 
dicated analytically are unstable and cannot be observed, The simulation 
points substantiate quite well the response obtained by describing function 
analysis, however. 

Note that the response peak resulting f rorn consideration of com- 

the peak asso- plianee dynamics occurs at a noticeably lower frequency 
ciated with a second-order description of the gyro, Apparently, the closed 
Poop poles are r cally altered by inclueling compliance dynamics in the 

loop. There appears to be some correlation between the location of this 

peak and the low frequency complex conjugate poles of the transfer function 
relating torque exerted on the gi al by the rotor to the input angular rate 
(Eq. (4.1-7)). The peak gain is centered at about 175 Mz, and the poles of 
the transfer function are at about I90 Hz. From a practical viewpoint this 
change in the frequency response can constitute a serious limitation on the 
useful bandwidth of the gyro loop. In the gyro analyzed, greater rotor bear- 
ing rigidity is required if the peak is to be moved to a higher frequency arad a 
larger bandwidth (predicted by assuming simple gyro dynamics) is to be 
realized, 
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Figure 5.2-5 Frequency Response of a Ternary Gyro: 
Comparison of Analytic and Simulation 
Results when Rotor Bearing Compliance 
is Considered 
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5.3 EFFECT OF RANDOM SIGNAL AT THE NONLINEARITY INPUT 

Describing function analysis is used to obtain the closed loop 
response of a ternary gyro when a Gaussian random signal is present at 
the nonlinearity input along with a sinusoidal signal. The random signal, 
described by its standard deviation, or, can be present as a result of a 
random input to the gyro, noise in the loop, or  deliberate injection in the 
form of a random dither. The present discussion makes no assumption 
about the origin of the random signal. 

The Describing Function - Due to the presence of a random signal 
in addition to the sinusoid, the describing function gain to a sinusoid is dif- 

ferent from that used in the previous section. It depends not only on the 

amplitude A of the sinusoidal input to the nonlinearity but also on the magni- 
tude of the random input. A random signal can be described by its statistical 
moments. If it is assumed to be a Gaussian, zero mean variable its distri- 
bution is completely specified by a standard deviation, ur. The describing 
function for the sinusoid is written as NA(A,o,) and is given for the ternary 
nonlinearity in Appendix E of Ref. 3. A s  by approaches zero NA(A, U r )  be- 

comes the describing function for a pure sinusoidal input. Figure 5.3-1 
illustrates the effect of the random input on the sinusoid transfer charac- 
teristics of the ternary nonlinearity. It issimilar to Fig. 5, l -4 .  The out- 
put characteristic shown is the average amplitude of the output harmonic 
of the same frequency as the sinusoidal input, The effect of a random input 
to the ternary nonlinearity is to make the rise of the sinusoidal input-output 
curve more gradual. When O r  > 0 and A< 6 there is a finite probability 
that the net input to the nonlinearity will exceed 6 and have the same sign 
as the sinusoid. There is a smaller probability that it will exceed the dead- 

zone with the opposite sign. When the mean is taken, a non-zero average 
value for the appropriate nonlinearity output harmonic results. In this way 
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the sinusoid is boosted through the deadzone by the random signal. On the 
other hand, when A exceeds 6 the fact that the noise input to the nonlinearity 
can have a sign opposite to that of the sinusoid produces a describing func- 
tion gain somewhat lower than that occurring in the absence of random sig- 
nals. It can be seen from Fig, 5.3-1 that the net effect of adding a random 
signal at the nonlinearity input is to make the describing function gain for 
the sinusoid less amplitude- dependent (more nearly linear). 

4 -D 
A 

A 

Figure 5.3- 1 dom Input on the Sinusoid 
Transmission Characte ristics of a 
Ternary Nonlinearity 

Unfortunately, the presence of the random signal in the loop 
involves more Itplan just a c e in NA. Strictly speaking, O r  must be 
determined through the use of a describing function gain Nr(A, O r )  and 
knowledge of the characteristics of the random signal at the point where 
it enters the gyro loop. Since NA and N r  both depend on A and Or, solu- 
tion of the closed loop relations in the presence of both a sinusoid and a 
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random signal requires a complicated iterative procedure. However, in 
order to illustrate the effect of random inputs to the nonlinearity we will 

assume different values of err without specifying their origin. 

The fact that the curves obtained represent the average response 
to a given sinusoid does not detract from their value. If we are interested 
in the effect of gyro output on a resonant mode of the direction cosine ma- 
trix calculation o r  on the system drift rate generated, the mean value 
representation is often as useful as an exact one. 

b e 

4D - 
R 

e a 

Figure 5.3-2 rsection Points Caused 
by Random ~ o n ~ n e ~ r i t y  Input 

Changes in the Frequency Response - Figure 5.3-2 indicates 
the ellipse intersection points for the sinusoid input-ou~ut curve which 
result when a random signal also enters the nonlinearity. Note that the 
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likelihood of multiple intersection points occurring on any one ellipse is 
reduced. In this particular example there are no multiple intersection 
points. Also, because there can be an output for A <6, all ellipses have 
at least one intersection point. The effect on the sinusoid frequency re- 
sponse is illustrated in Fig. 5.3-3. Since no ellipse has multiple inter- 
sections, there is only one value of closed loop gain at each frequency; 
the jump resonance phenomenon is eliminated. Also, the closed loop gain 
is more than zero for all frequencies and the sharp cutoff found in Fig. 
5.1-4 is eliminated. Figure 5.3-4 shows the three frequency responses 
corresponding to the three nonlinearity curves of Fig. 5.3- 1. A s  Qr in- 
creases, the jump resonance disappears and bandwidth increases. Gradual 
gain reduction at high frequencies replaces the sharp attenuation. In short, 
when the random signal is present, the closed loop frequency response 
appears to be more like that of a linear system. 
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Figure 5.3-3 Closed Loop Response for a Ternary Gyro 
with a Certain Random Nonlinearity Input 
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6. GYRO AND SYSTEM ERROR 

SUMMARY 

A hybrid simulation which will facilitate the study of 
errors  in strapdown gyros and strapdown navigation 
systems is described. To begin with, the motivation 
for a strapdown gyro and error  simulation is discussed. 
The form of the proposed simulation is presented, along 
with some reasons for rejecting other approaches to em- 
ulating strapdown gyro and system behavior. The section 
closes with a description of that portion of the hybrid 
simulation which computes a measure of system attitude 
e r ror  from errors  at the outputs of the individual gyros. 

6.1 MOTIVATION FOR A S 

The analysis and results reported in Ref. 1 and 2 are based on 
several assumptions and simplifications. Before proceeding with further 
work based on those results, it would be prudent to establish some check 
on the validity of these approximations. 
substitute for the construction and testing of hardware it is considerably 
less expensive and far more versatile. As an intermediate step between 
analysis and prototype construction, simulation is ideally suited to the 

present stage of the investigation. The value of simulation has already 
been well demonstrated in this report--on the basis of the comparisons 
obtained in Sections 4 and 5, the response characteristics of pulse rebal- 
anced gyros using delta modulation torquing can be determined analytically 
with a considerable amount of confidence. 

While simulation is not a perfect 
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Other topics which were treated in an approximate manner in 
the above references include crosscoupling errors  and random vehicle 
angular motions. When crosscoupling errors were computed in the case 
of oscillatory angular motion, the gimbal output angle was obtained from 
a linearized model for the binary pulse torqued gyro. The linear sensor 
approximation does not take into account the pulsed nature of the rebalance 
torque o r  float angles generated by limit cycling. In addition, treatment 
of crosscoupling errors  in the ternary pulse torqued gyro is very difficult 
even with the aid of describing function techniques. Because of the non- 
linear nature of pulse rebalanced gyros, no confidence can be placed in 
the analysis of crosscoupling effects unless the results are substantiated 
by simulation. 

In the portion of Ref. 1 dealing with gyro parameter optimiza- 
tion, several approximations and simplifications were made to permit 
easy calculation of gyro errors caused by random vehicle angular motions. 
Essentially, these assumptions involved the use of sinusoid transfer 
characteristics predicted by the analysis of Section 4 and 5 to compute 
errors  induced by random vibrations. A simulation which generates real- 
istic analogs of random angular motion about all major sensor axes is 
needed to check the assumptions. 

Several questions which arose and were left generally unanswered 
in the preceding work can also be treated easily by a well designed simula- 
tion. In the discussion of strapdown gyro e r ror  compensation, the possi- 
bility of using the three basic gyros to measure angular motion for their 

own compensation is mentioned. Stability and accuracy analyses of this 
approach are very difficult to perform analytically because many closed 
loops, often containing time-varying gains, are generated. However, the 
technique is so attractive in terns of cost, power, weight and reliability 
that it must not be ignored. A well designed simulation of three gyros and 



the compensation calculation will permit an empirical determination of the 

feasibility of this approach. In addition, simulation provides an inexpensive 
way of checking other proposed gyro error  compensation schemes, includ- 
ing their sensitivity to the accuracy of various motion sensors. 

In the work reported in Refs. 1 and 2, a system level figure-of- 
merit was developed to indicate the effect of gyro errors  on strapdown 
system accuracy, Equations were derived relating the time histories of 
gyro errors  to system attitude error. These exprewions were exercised 
in the case of certain easily described gyro output errors  (bias, white noise, 
oscillations, etc. ) to give simple analytic relations between sensor and 

system drift rates. Whenever examples were presented and parameter 
optimization was  illustrated, the latter relations were used rather than the 

original,more complex equations , The approximations which resulted 
should be substantiated by simulation. 

In addition to verifying results from prior analyses, a well 
designed flexible simulation will be invaluable in  the continuing study of 
strapdown sensors. Compensation within the gyro loop is easily analyzed 
and the effects of various torque generator characteristics on system 
errors can .be studied. Test procedures for determining basic sensor 
error  parameters can be evaluated, Using the simulation, dynamic test 
inputs can be designed and simulated information will be available for use 
in comparing different test data reduction techniques. Finally, the versa- 
tility and flexibility of a simulation must be emphasized. While the ulti- 

mate verification still lies in construction and testing of actual hardware, 
when it is desirable to investigate many proposed changes in  gyro para- 
meters only simulation provides an inexpensive and expedient means. 
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Description of the Projected Simulation - The simulation planned 
and under construction is illustrated in Fig. 6.1- 1. Investigation indicates 
that a purely digital approach will be too slow if numerical integration is 
used to simulate the complex, high frequency dynamics to be considered. 
On the other hand, system er ror  is to be computed using the e r ror  growth 
difference equations described in Ref . 2. This requires a digital computer. 
The hybrid simulation shown permits simultaneous determination of high 
frequency variables and accurate calculation of system er ror  growth. 
Three gyros, including pulse rebalance torquing electronics, will be simu- 
lated on the analog portion along with random and deterministic motion in 
three dimensions , gyro motion-induced er ror  torques and error  compen- 
sation schemes. The gyro models will include structural dynamics when 
desired. Sensor outputs and true angular motion will be provided to the 

digital portion for calculation of system attitude errors. The simulation 
planned is a flexible tool for analyzing additional aspects of strapdown sen- 
sor  errors. Gyro models can be changed to accommodate studies of exotic 
sensors and accelerometers can also be simulated. 
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Figure 6.1-1 Hybrid Simulation of Gyros and Calculation 
of System Attitude Error  
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6.2 PROGRAM FOR THE DIGITAL PORTION 

One function of an inertial navigation system is to provide an 
indication of vehicle orientation with respect to a reference coordinate 
frame, In strapdown systems this requirement is satisfied by computing a 
direction cosine matrix, C, relating vehicle and navigation reference 
frames. Given an initial C matrix, the direction cosines can be computed 
from the history of rotations about each body axis, If we compute C at 
discrete intervals T seconds apart, the direction cosines at the end of the 

(n + 1)st interval can be expressed in terms of those at the end of the prior 
period and a matrix of incremental angles, Ae (see Ref, 1). The matrix 

9 contains the angles through which the body axes have rotated since the 

last sample time. The equation relating the two direction cosine matrices 
is: 

= Cne Aen 
‘n+1 (6.2- 1) 

when computer considerations such as quantization, word length and trun- 
cation are ignored, Aen is defined by 

(6 , 2- 2) 

where ox, oY and oz are the angular rates about the body axes, In prac- 
tice the elements of A% are measured by the x, y and z-axis gyros, 

Generally, there is a difference between the actual Aen matrix 
and that obtained from gyro measurements. The difference between the 
actual AOn matrix and thai given by the gyros is a third matrix, En. The 
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presence of En results in an error,  AC, in the C matrix computed from 
the gyro measurements. Given En for all values of n, we can compute AC 
at the end of each interval. A difference equation for AC which retains 
second order terms in small matrices is obtained from the series expan- 
sion of Eq, (6.2- 1): 

A figure-of-merit for gyro performance, pn, can be computed from ACn 
(see Ref. 1): 

i m - I trace (AC; ACn) 
Pn - 2 (6.2-4) 

Description of the Program - At each sample time the digital , 

computer portion of the simulation receives the simulated gyro outputs 
(pulse counts) and true body rotations (actual Aen  matrix) as inputs. The 

program then proceeds to compute En, Cn + 1 ACn + 1 and Pn. The ma- 
trices Cn+ 1 and ACn+ 1 are stored for the next cycle and Pn is provided 
as an output. Figure 6.2-1 is a flowchart for the program. On this chart, 
Co and ACo are initial condition matrices for C and AC, respectively. 
The number n is the current number of compute cycles executed, This 
program has been run on a digital computer identical to the one to be used 
in the simulation. The compute cycle was found to be about 45 msec in 
duration. This constitutes a lower limit on the size of the sample period 
T if the digital computer is to process data when received and the analog 
simulation is not time scaled. The program was also checked out on an 
IBM QUIKTRAN time-sharing system. Simulated gyro error  inputs in the 
form of ramps, sinusoids and coning motion were used. Jn every case the 
computer program output (pn) agreed with the expected result. The program 
is considered ready for use. 
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and A0 measured since 

I last sampling. 1 
1 

En = PC - ABn a 
I Cn+l = Cn(I + A6 + A0 ,/2 2 + A0 n/6)l 3 

T I P ~ + ~  = trace ( A c ~ + ~  %+l) I 
t 

WRITE Pn+l, Pn 

§TOP 

Figure 6.2-1 Flow Chart for the Digital Part 
of the Hybrid Simulation 
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7. CONCLUSION 

7.1 CONCLUSIONS 

Progress has been made in developing simple and accurate 
analytic descriptions of strapdown gyro behavior. A gyro employing bi- 

nary delta modulation torquing was  represented by a linear transfer func- 
tion and the approximation was verified by simulation. The only time that 
a binary gyro is not well represented by a linear transfer function is when 
the limit cycle is extinguished by an input of sufficient frequency and amp- 
litude. However, this situation is easily predicted by analysis and inputs 
required to quench the limit cycle are in any case unlikely. It was shown 
that gyros incorporating the time modulation rebalance scheme can also 
e represented by a linear transfer function. 

Excellent agreement was found between the transfer character- 
istics predicted analytically for a ternary pulse rebalaneed gyro and those 
experienced by simulation. T 
is more complex than for the other two sensors, reflecting in part the 
nonlinear re of this gyro loop. The 

ternary gyro response is well illustrated in Section 5. 

ysis in the ease of the te 

The effects of complex dynamics w i  n the gyro loop were ac- 
curately predicted analytically. The describing function techniques used 
throughout are capable of handling linear loop elements of any complexity. 
Consequently, including a linear model of rotor bearing compliance in the 
formulation of the analysis did not present any great difficulty. It was 
shown both analytically and by simul on that rotor bearing compliance 
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can alter gyro transfer characteristics significantly. However, it is still 
possible in the case of the binary gyro to represent the sensor response 
to sinusoidal inputs by a linear transfer function. Sampling within the gyro 
loop was also shown to reduce the instrument's bandwidth. 

Most of the approximations regarding gyro loop behavior discussed 
in this report pertain to sinusoidal inputs only. To analyze the contribution 
of random vibrational motion to strapdown system errors  it is necessary 
to describe the transmission characteristics of gyro loops when random 
inputs are applied. For gyros using binary delta modulated and time modu- 
lated torquing the answer seems to be a simple extension of the work 
reported above. Since the sinusoidal response of these two sensors is 
linear the same loop descriptions may suffice. The problem of developing 
a simple expression describing the propagation of random signals through 
a ternary gyro appears to be much more difficult; the effort required to 
investigate response to sinusoidal inputs is considerable and there is no 
reason to expect that random inputs will simplify the problem. The ques- 
tion of higher harmonics in the gyro output also remains; recall that the 
definition of frequency response involved only that component of gyro output 
which had the same frequency as the input. The problem of higher har- 
monics present in the square wave form of the gyro output must eventually 
be treated. In any case, the presence of these extra outputs does not in 
any way detract from the importance and validity of the excellent prediction 
of loop transfer characte ristics demonstrated. 

Finally, all of the results obtained this far relate to the gyro 
output. In order to compute crosscoup errors  the float angle response 
must be described, This wil l  require additional, though probably not 
radically different, approximations to the behavior of nonlinear gyro loop. 
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7.2 CONTINUATION OF EFFORT 

Development of the gyro e r ro r  simulation will be the focus of 
future work. The time modulation gyro torquing scheme will be simulated 
and frequency response characteristics obtained will be compared with 

those predicted analytically. Consequently, it should be possible to verify 
the analytic description of this kind of gyro loop presented in Section 4 of 
this report. Analogs of motion-induced er ror  torques will be applied to 
the gyro models to study the propagation of e r rors  in the individual gyros 
and in a strapdown system. The sinusoidal-input transfer characteristics 
discussed in this report will be used to predict transmission of random 
signals through the gyros and simulation will be used to check the analysis. 
In this manner, it is expected that the linear approximations to the binary 
and time modulation torqued gyros will be certified for  use in analysis of 
random vibration-induced errors. 

The possibility of compensating environment-induced gyro 
e r rors  by processing outputs from the basic sensor triad will be explored. 
Emphasis will be placed on compensation through corrective torquing but 
some effort will be devoted to the problem of compensating at the gyro 
output. It is anticipated that the accuracy potential of both these techniques 
will be determined by simulation in the near future. If certain aspects of 
gyro e r ro r  compensation (for example, removing output axis angular 
acceleration errors)  are shown to be unsatisfactory when only the gyro 
outputs are processed, the simulation study will be extended to cover the 
use of additional sensors. 

Future analytic work will be directed toward describing the 

propagation of dynamic errors through a set of ternary pulse torqued 
gyros and into system misalignment. In particular, it is thought that 
crosscoupling e r rors  in the ternary gyro may be treated by the 
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APPENDIX A 

GIMBAL MISALIGNMENTS 
CAUSED BY OUTPUT AXIS ANGULAR MOTION 

A single-degree-of-freedom gyro experiences torques about its 
input axis which result from angular rates about the output axis. These 
torques misalign the float about the input axis, IA, to a degree which de- 
pends on the stiffness of the float suspension. Suspension stiffness to- 
gether with the floatation fluid determine the time constant of the relative 
motion between case and float. In this section we analyze the time response 
of the float misalignment about IA to a step angular rate applied about the 

output axis, OA, 

Ccnter of M:rss 

K 

K 
Ccnter of M:rss 

D 

Figure A-1 Model for Gyro Case and Float Dynamics 
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Figure A-1 shows the model assumed for float dynamics about 
the input axis. The suspension stiffness is represented by linear springs 
and fluid damping by a pair of dashpots. 

0 1 =  

010 = 

D =  

Float-to-case angular misalignment 
about IA 
Float-to-case angular misalignment 
about OA 
Case angular rate about IA 
Case angular rate about OA 
Float moment of inertia about IA 
Wheel angular momentum 
Distance between float center of mass 
and each float bearing in cm 
Equivalent linear damping constant in 
dyne- sec/cm 
Equivalent rotational damping constant 
in dyne- cm- sec 

Equivalent linear spring constant in dyne/cm 
Dh2 

The equation for angular motion of the float about IA is derived: 

Torque on Float = Gyroscopic Torque - (Spring &Damper Reaction Torques) 

or 

Simplifying, wehave 
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where 

D a  3 =  m 

and 

n I.. 
11 

If we assume Gi and &o to be zero, Eq. (A-2) reduces to 

(A-3) 

(A-4) 

(A-5) 

For most gyros the float motion is heavily damped and the 
response to a step of angular rate about OA can be accurately described by 
a single time constant, 7:  
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Equations (A-3), (A-4), (A-6) and (A-7) are used to compute float misalign- 
ment behavior for different values of Ci and KO The fixed gyro parameters 
chosen are 

5 H = 2.5 x 10 dyne-em-see 
4 = 3,6cm 
Iii = 300gm-cm 2 

Three plots are presented to assist the gyro designer in picking the appro- 
priate suspension stiffness and damping coefficient to constrain misalign- 
ment about IA. 

Figure A-2 shows the behavior of the float time constant, T ,  as 
a function of K and Ci. Given T we can enter Fig. A-3 and obtain a time 
history of the normalized float angle, 24 Kai/Huo. Note that any time 
constant obtained from Figo A-2 implies 4=3.6cm0 Figure A-4 allows 
us to obtain the misalignment angle as a function of time directly. The 
effect of suspension stiffness on the time response is readily observed. 

2 

If the suspension is not stiff enough for  the range of expected 
output axis rates, the float pivots can strike the bearings. The resulting 
static friction between pivot and bearing surfaces provides a static break- 
out torque, T ~ ,  which masks small torques about the output axis caused by 
input angular rates. Accordingly, when the three-level torquer is used 
input rates smaller than ?s/H are not seen at the sensor loop output, and 
the gyro has an effective rate deadzone. The force, F, pushing each pivot 
against its bearing results from the gyroscopic torque caused by an output 
axis angular rate and from forces applied by the gimbal suspension: 
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Figure A-2 Float Misalignment Time Constant as a 
Function of Suspension Stiffness K and 
Damping Constant Ci 
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Figure A-3 Normalized Misalignment Angle Response 
to a Step Angular Rate About the Gyro 
output Axis 
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2 I . .  = 300 gm-cm 
11 

4 x 10-l' 
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f = 3 . 6 c m  

4 time from initiation of a 
step angular rate about 
the output axis 

10' lo8 
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Figure A-4 Normalized Misalignment for Values 
of Suspension Stiffness 
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where d is the clearance between bearing and pivot. Knowing pstatic, an 
effective measure of static friction at the pivot-bearing interface, we can 
evaluate ?s: 

The rate dead-zone corresponding to this break-out toque is 

H 

In a binary gyro the constant application of torque by the torque generator 
prevents this dead-zone. 
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APPENDIX B 

MOTION INDUCED ERRQRS 
IN THE SINGLE-DEGREE-OF-FREEDOM 

PENDULOUS ACCELEROMETER 

Errors introduced in the single-degree-of-freedom (SDF) pen- 
dulous accelerometer are discussed below. Whenever possible the error  
torque mechanisms are related to those given for the single-degree-of- 
freedom gyroscope in Ref. 1. Free use is made of both the derivations and 
discussions presented in the reference. 

The SDF pendulous accelerometer is illustrated in Fig. B-1. 
Two major differences between this representation of the instrument and 
that presented for the SDF gyro are obvious. The direction perpendicular 
to the output and input directions is called the pendulum (p) axis rather than 
the spin (s) axis. Also, the instrument is assumed to consist of only two 
basic parts: a case and a combination gimbal and pendulum. The error  
torques induced in the SDF pendulous accelerometer by angular motion can 
be eqressed by modifying the equations developed in Appendix A of Ref. 1. 
As a result of the instrument model shown in Fig. B-1, all terms in 
Eq. (A-19) of the reference which involve ie, and pi are dropped, and the 
subscript g is deleted because the gimbal and pendulum are considered as a 

single rigid body. The subscript p is substituted for s in the remaining 
terms. Also, since there is no spinning wheel involved in the accelerometer 
under consideration, all terms involving angular momentum, H, and the spin 
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p (pendulum) 

(output) 

Figure B-1 Exploded View of Single- Degree-of- Freedom 
Pendulous Accelerometer Showing Small 
Misalignment Angle, - 01 
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rate of the rotor relative to the gimbal, as, are 
S 

= I  (G + LO)+(Iii - I ) 0 u . + I  (& - 0 u.) r.flof 00 0 PP P 1  ap P 0 1  

(Gi + 0 w ) +  bi(UP 2 - u;) 
+ Ioi O P  

+ a  (I - Iii)(Up 2 - 0;) 
0 PP 

0 1  o o p  1 - I.. w 0. + I  ij 
+Oq[PPP 11) 

Since the ideal accelerometer is insensitive to angular motion, all 

of the terms in Eq. (B-1) must be considered as error  torques in the SDF 
pendulous accelerometer. However, as in the case of the SDF gyro, the first 
term, Ioo~o ,  together with any damping torque about the instrument output 
axis, is usually considered as part of the unavoidable sensor dynamics and 
included in any "ideal" SDF pendulous accelerometer model. The remaining 
error terms can be divided into several broad categories similar to many 
exhibited by the gyro. Sensitivity to angular accelerations is present. The 
principal contribution, that caused by angular acceleration about the sensor 
output axis, is unavoidable because of the nature of the pendulous acceleration 
sensing instrument. Several anisoinertia terms also appear. Because the 
gimbal iuld pendulum of the accelerometer can be viewed as a rigid body, the 
opportunity exists to design an instrument which experiences no error  torques 
from this cause. Finally, product of inertia terms appear in Eq. (B-1). The 
first of these terms can be larger than that experienced by a SDF gyro if the 
pendulum shown in Fig, B-1 deviates from the p'direction in the 0'-p'plane, 
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Linear Motion - Error torques generated by linear motion 
(acceleration) of the SDF pendulous accelerometer can be established using 
the error  torque equatiom. 

where m is the mass of the gimbal and pendulum combination, - b is the vector 
of displacement between the gimbal-pendulum center of mass and the output 
axis expressed in gimbal coordinates, and [dG is the linear acceleration 
vector, similarly expressed. Notation will be as near to that of Section 2 

and Appendix A of Ref. 1 as possible. Acceleration expressed in the gimbal 
frame is related to that experienced in the case frame by: 

Substituting Eq. (B-3) into. Eq. (B-2), the output axis torque caused 
linear acceleration of a pendulous accelerometer is: 

= m6 a. + 01 a m6. a + a.a - a a.) p ( 1  0p-olpao)-  1 ( p  1 0  0 1  

The effect of linear compliance on accelerometer errors  

03-31 

by the 

03-41 

can be 
illustrated by describing the center of mass displacement as a function of 
Linear ae cele ration: 

P 

'i (B-5) 
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Substituting Eq, (B-5) into Eq. (B-4), a more detailed torque equation 
results: 

The first term of Eq. (B-6), map 3 measures linear accelera- 
0 

tion along the input axis. This is the only output axis torque in the ideal 

pendulous accelerometer. The pendulosity m6 is designed into the instru- 
ment with care,, Al l  the remaining terms in this equation contribute errors  
to the accelerometer. The term m6poaoap is basically a cross-coupling 
e r ror  arising from rotation about the single axis of freedom and map apao 
results from gimbal-to- case misalignment. Since accelerations along the 
input axis will cause considerable excursions of the gimbal angle, ao, from 
null, sizeable rectification errors  can be produced in this instrument by 
properly phased linear vibrations with components along the input and 
pendulum axes. The second line of Eq. (B-6) illustrates e r ror  torque 

Po 

0 

contributions from unwanted mass unbalance and the last line expresses 
compliance e r ror  terms. It can be seen that linear compliance effects 
can produce constant e r ror  torques. The accelerometer is also subject 
to random er ror  torques similar to those in an SDF gyro. The e r ro r  in 
indicating linear accelerations along the case fixed input axis of an SDF 
pendulous accelerometer is simply the sum of all e r ror  torques, divided 

by the pendulosity, m6po, 
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Rebalance b o p  Errors - Errors  in the single-degree-of- 
freedom pendulous accelerometer which result from the rebalance 
mechanism are identical with those described for the SDF gyro in Section 
2.4 of Ref. 1. The rebalance loop configurations commonly used are 
similar to those for the gyro and the input to the rebalance loop of either 
instrument can be viewed as a torque instead of an angular rate o r  a linear 
acceleration. 

126 



APPENDIX C 

ACCURACY OF THE SMALL SIGNAL APPROXIMATION TO THE 
TWO-SINUSOID-INPUT DESCRIBING FUNCTION 

FOR THE BINAFtY NONLINEARITY 

In Section 4.1 the Two-Sinusoid-Input Describing Function (TSIDF) 
gain of the binary nonlinearity is used. The describing function gain for a 
small signal sinusoid in the presence of a large limit cycle sinusoid is ex- 
pressed there by the approximation: 

where A is the limit cycle amplitude at the nonlinearity input and D is the 
relay drive (output) level. The describing function gain for the limit cycle 
in the presence of the small signal is given by 

4D NA= 3 

It is desirable to evaluate the accuracy of each approximation. 

The required TSIDF's are given in Appendix D of Ref. 3. De- 
noting the amplitude of the small signal as B, where B/A =d p, p < l: 



and 

Approximate Value of NB 
Exact Value of NB - 1 % Error in NB = 

where 

(Elliptic Integral of the First Kind) 

x 100 

d 2  
E (p) =I 4- dll, (Elliptic Integral of the 

Second Kind) 
0 

Approximate Value of NA 

Exact Value of NA - 1 % Error in NA = 

The percentage errors  in TSIDF estimates caused by using the appropriate 
approximations are: 

x 100 

and 
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Note that these errors are functionof p only. Figure C-1 shows the 
errors plotted as a function of p. As expected, the errors in the approxi- 
matiom vanish as the amplitude ratio p goes to zero. 

P = where: B = Signal Amplitude Entering 
the Nonlinearity 

A = Limit Cycle Amplitude 
Entering the Nonlinearity 

A 

0 00 2 0.4 0.6 0.8 10 0 

0 

Figure C-1 Error in the Approximation 
to the TSIDF 
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APPENDIX D 

LIMIT CYCLE QUENCHING 
I N  THE BINARY GYRO LOOP 

When determining the limit cycle of a binary pulse rebalanced 
gyro, the nonlinearity can be replaced by an equivalent describing function 
gain, NA., If both a signal, B sin ut, and the limit cycle oscillation, 
A sin o A t ,  are present at the input to the nonlinearity, NA remains es- 
sentially independent of the signal as long as B << A (see Appendix C) ,  

In this appendix the influence of a large signal on the describing function 
gain to the limit cycle is considered, The material presented follows 
Ref. 3, Example 5,3-2. 

If a limit cycle is to exist in a binary gyro, the following amp- 
plitude condition must be satisfied: 

where H(s) is the open loop transfer function of the linear part of the gyro 
loop, The limit. cycle frequency wa is determined from the phase condition: 

Several possible values for G J ~  may exist, but they are fixed for any given 

gyro. Consequently a limit cycle cannot exist if 

for all possible values of LOA , 
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The describing function gain, NA, of the binary nonlinearity is 
in general dependent on A and B. From the theory of Two-Sinusoid-Input 
Describing Functions (TSIDF's), 

03-41 

where D is the nonlinearity drive level, A/B > 1 and E(B/A) is the complete 
elliptic integral of the first kind (see Ref. 3). Maximizing NA over all 

values of A yields N A ~ ~  as a function of B: 

= 0.909 - 0.8551) 
Nhlax  - B  ; ' A  (D- 5 ) 

Combining Eqs. (D-1) and (Des), the value of the signal amplitude which 
causes the limit cycle to be Bq, is found: 

The nonlinearity describing function gain to the signal when the limit cycle 
is quenched is found by substituting B/A = 0,909 into the relation for  
NB(A,B) given in Appendix C and employing Eq, (D-6): 

The binary torqued gyro loop can now be viewed as the system shown in 
Fig. D-lo 
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Dynamics 
Relating Input Rate 
to Gimbal Torque 

y = n sinut 

Figure D-1 

oro = B s in  vt 4 A sin WLt 

Relating Input Rate 

Binary Loop Viewed at the Point where 
the Signal Quenches the Limit Cycle 

In order to determine the values of input frequency and ampli- 
tude which cause the limit cycle to be quenched, the transfer function 
between input angular rate ai and float angle a. is written in terms of the 
transfer function for the various blocks in Fig. D-1. 

Mi IyO 

5 3  o. 1 Mnet 
O10 

Mnet 

- 4 s )  -(SI 

1 + -(s) A(s) NB 
M -(s) = 

0. 
1 
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From Eqs. (D-S), (D-7) and (D-8), the solution for the input amplitude 
required to quench the limit cycle can be written: 

The most convenient way to display Eq. (D-9) is a plot of Qquench as a 
function of u. For a particular set of parameters, a single-valued curve 
results, delineating the boundary between the regions where quenching 
does and does not occur, Figure D-2 indicates how limit cycle quenching 
helps determine the theoretical frequency response curve seen in Fig. 
4.2-4 for the binary loop with simple gyro dynamics. The top half indicates 
the quenching curve for this system, showing the frequency where quench- 
ing occurs when a 0.1 rad/sec oscillatory input rate is applied. The re- 
sulting frequency response with the effects of quenching shown in the lower half 

of the figure,, When the limit cycle is quenched, the loop output is a square 
wave at the signal frequency with an amplitude equal to the nonlinearity 
drive level. Torquer current is equivalent to 1 rad/sec. The fundamental 
component of the output has an amplitude of 4/n = 1.276 rads/sec and the 
gain of the loop is (1.276/0.1) = 12,76, The effect of quenching is illus- 
trated in Fig. D-3 for the loop with compliance dynamics discussed in 
Section 4.3.2. 
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Figure 2)-2 Limit Cycle Quenching and Its Effect 
on Frequency Response (Second 
Order Gyro Dynamics) 
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Figure 0-3 Limit Cycle Quenching and Its Effect 
on Frequency Response (Rotor Bear- 
ing Compliance Considered) 
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Figure D-4 presents simulation records illustrating limit cycle 
quenching. The situation shown corresponds to suppression of the limit 
cycle as input frequency i s  increased to about 140 Hz, indicated in Fig. 
D-3. The frequency of q was increased slowly but the change is not 
perceptible in the figure. Limit cycle quenching is seen as an abrupt 
change in loop behavior as reflected in the float angle. 

(a) Input Angular Rate, Ui 

. _ . . . . . . . . . .  . .  

(b) Float Angle, a+, 

t 
1 

1 mrad 

t + 

Figure D-4 Binary Gyro Simulation Record 
Showing Limit Cycle Quenching 
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APPENDIX E 

DERIVATION OF THE ELLIPSES USED IN DETERMINING 
THE FREQUENCY RESPONSE OF THE 

TERNARYGYROLOOP 

In analysis of the ternary pulse rebalanced gyro loop (see Sect. 5), 
a graphical solution is used. This is done by using two separate descriptions 
for  the amplitude ratio between sinusoids on either side of the nonlinear element. 
One description, developed from linear analysis techniques, generates a 
family of ellipses. The equation for these ellipses is derived below. 

Figure E-1 shows a generalized loop containing a single nonlinearity. 
N is an equivalent sinusoidal gain (describing function gain) for the nonlinearity 
and is assumed to involve no phase shift. The loop is driven by a sinusoid of 
constant amplitude, M, and frequency, o. The amplitude of the transfer 
function between the signals A sin(ot + #.$ and M sin ut is: 

Using the identity 
eje = case -+ jsine 

Eq. (E -1) may be written as: 
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M sin wt ANsin(wt t d~) 

P1 

10, 

L~ 4 p1 e 

L~ 9 p2 e 

N = equivalent sinusoidal gain 
of the nonlinearity 

Figure E-1 A Loop Containing One Nonlinear Element 

Squaring and cross-multiplying gives: 

Solving for the loop output amplitude, AN, 

- A C O S ( ~ ~ + ~ ~ )  1 AN= + -  
PlP2 - PlP2 

we obtain 

(33-5) 
M 2 2  pl-A 2 sin 2 (e1+e2) 

In this expression M is given and Ol,pl, 02, p2 are determined from the 
frequency o. Thus, for fixed input amplitude and frequency we have a relation 
giving the amplitude of the nonlinearity output as a function of A, the amplitude 
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of its input. Note than AN is independent of the value of N. Plotting AN 
for values of A yields the ellipse shown in Fig, E-2, Critical points in 
the construction are illustrated, 

Figure E-2 Nonlinearity Input-Output Relation 
Derived from Analysis of the Linear 
Portion of the Loop Shown in Fig. E-1 
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APPENDM: F 

SIMULATION OF GYROS 
WITH A SIMPLE REPRESENTATION OF DYNAMICS 

This appendix describes simulation of binary and ternary pulse- 
torqued gyro loops where the single-degree-of-freedom gyros involved are 
characterized by second-order linear dynamic equations. All simulations 
were scaled to run at 1/100 real time. The basic signal flow diagram 
describing the gyros is given in Fig.F. 1-1. The simulations differ only in 
the form of the nonlinearity assumed. Appendix G describes the simulation 
of gyros with more complex dynamics. 

F. 1 BINARY GYRO SIMULATION 

When simulating the binary torqued loop with simple dynamics, 
certain blocks shown in Fig. 1.1-1 are represented by the following linear 
transfer functions : 

Mi/wi = H dyne-cm-sec/rad 

dyne-cm/ma 
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Y 

L 

--f In-Phase Output Amplitude 
Analyzer 

). + Quadrature Output Amplitude 

Definitions: 

oi 

Mnet 
010 

itg 
MQ 
Mi 

= Input angular rate, in radlsec 
= Net torque about the gimbal output axis, in dyne-cm 
= S i n a l  generator output, in mV 
= Torquer current input, in mA 

= Torquer output, in dyne-cm 
= Gyroscopic torque, in dyne- cm 

Figure F. 1-1 Signal Flow Representation of 
Gyro Loop Simulation 
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The analog mechanization of these relations is shown in Fig. 
F. 1-20 Pot settings are given as algebraic combinations of loop parameters. 
To facilitate interpretation of analog voltages as physical quantities, a list 
of scaling factors is presented. The binary nonlinearity mechanization is 
given in Fig. F. 1-3. 

H 

In-Phase Output Amplitude 
Quadrature Output Amplitude 1 Analog Volt 

Variable Represents 

ui 0 .1  rad/sec 
Mnet 1.66 x lo4 dyne-cm 
QO 1.66 mV 

1.66 mA 
Mtg 2 x lo4 dyne-cm 
‘tg 

Note: D is the nonlinearity drive level in mA. - 
One second simulation time = 0.01 sec real time. 

Figure F. 1-2 Mechanization of the Linear Portion 
of the Gyro Loop 

Prior to measuring the binary loop frequency response, the 
system is allowed to limit cycle with no input, and the oscillation ampli- 
tude and frequency are compared with values predicted from describing 
function analysis. If limit cycle quenching (see Appendix D) occurs during 
frequency response measurements, the float angle waveform becomes 
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nearly sinusoidal and has a large amplitude. The output amplitude, as 
indicated by the Fourier Detector, rises to 4D/a rads/sec, a value deter- 
mined only by loop parameters, and is insensitive to further frequency 
changes. 

00- 

iQ- 

D 
is the 

nonlinearity 
drive level 

in mA 

Block Diagram 

Figure F, 1-3 Binary Nonlinearity Mechanization 

For any given amplitude, critical points in the region of limit 
cycle quenching are given by four numbers, These are the frequencies at 
which the limit cycle is obgerved to be quenched and to reappear as the 
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input frequency is raised, and the corresponding points which occur when 
the frequency is lowered, The four points determine a region of jump 
resonance on the frequency response curves. When the input frequency 
is well above that of the limit cycle, the output of the Fourier Detector 
is quite noisy and difficult to read. 

F. 2 TERNARY GYRO SIMULATION 

The basic difference between the binary and ternary rebalance 
loops is in the nonlinearity used; the linear transfer functions and the 
placement of elements within the loop are the same regardless of which 
torquing scheme is used. Accordingly, Fig. F. 1-2 also describes the 
linear part of the ternary loop. Mechanization of the ternary nonlinearity 
is shown in Figo F. 2-1. 

Before measuring the ternary loop frequency response, the 
discriminator level 6 is lowered until limit cycling starts. The maximum 
value of 6 causing oscillation and the oscillation frequency itself are com- 
pared with those obtained from describing function analysis. During the 

frequency response measurement, jump resonance appears as a sudden 
increase in float angle and Fourier Detector output for a small frequency 
change. As with the quenched binary loop, the gain changes associated 
with ternary jump resonance occur at frequencies which depend on the di- 
rection of approach. However, in the ternary gyro there is no region in 
which the gain is insensitive to frequency changes such as can occur during 
limit cycle quenching in the binary gyro. There is a frequency above which 
loop output ceases because the peak value of the float angle no longer ex- 
ceeds 6. Once this frequency is exceeded, the loop output remains at zero 
unless the input frequency is lowered to a certain value where the output 
becomes non-zero again. The frequency of this second point is known 



analytically but can be difficult to check by simulation because computer 
noise causes the float angle to drift, To remove this source of error,  the 
input frequency was increased until the gyro output disappeared. The ob- 
served float drift rate was then corrected. When this procedure is followed, 
the loop output behavior is very close to that predicted by analysis. 

6 =  

D =  

(a) 

Clock 

Nonlinearity I I 
 scrimi in at or Level, I 
in mV I 
Nonlinearity Drive I 

I Level, in mA 
-1oov 

iti3 I 
I 
I +1oov 

I 

Block Dlpsram Madel 

Electronic U 
Switches Resistor 

Networks 

@) Simulation Mechanization 

Figure F.2-1 Ternary Nonlinearity Mechanization 
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APPENDIX G 

SIMULATION OF GYROS 
~ 

WITH ROTOR-TO-GIMBAL COMPLIANCE 

The gyro simulations which take into account rotor-to-gimbal 
compliance are illustrated by the flow diagram of Fig. F. 1-1. The tor- 
quer, nonlinearity and Fourier Analyzer portions of the simulations are 
identical with those described for simulating simpler models of pulse 
torqued gyros (see Figs. F, 1-2, F. 1-3 and F. 2- 1). Only the dynamic 
relations between Mi and q and between a0 and Mnet are treated in 
detail below. Practical considerations in obtaining frequency response 
curves are also discussed, 

G. 1 SIMULATION MODEL INCLUDING ROTOR-TO-GIMBAL COMPLIANCE 

The transfer functions relating input angular rate, gimbal torque 
and gimbal angle, derived in Appendix I, are: 

(s 4 +4pv,s 3 +[2Vn(2P 2 2  +l)+ug]s 2 2  +4Pv,S+Vn) 3 4  

(s5 + 648 4 + C3B3 + c 2 s  2 +CIS + cg)  
O10 1 -(SI = - 
%et Sbog 

(G. 1-2) 
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where 

n 

The analog computer mechanization diagram for Eq. (G. 1-1) appears in 
Fig. G. 1- 1. Appropriate potentiometer settings are given as algebraic 
quantities. Figure Go 1-2 shows the mechanization diagram for Eq. (G. 1-2). 
Figure 6.1-3 is included to illustrate analog computer scaling of important 
signals in the simulation. 

G. 2 BINARY GYRO SIMULATION 

The binary loop with simple dynamics characteristically limits 
cycles at a single frequency because there is only one point at which the 
open loop phase shift is -180'. When rotor-to-gimbal compliance is con- 
sidered, there can be more modes, usually three, each one characterized 
by a different frequency and amplitude. It is shown in Section 4.1 that the 

limit cycle frequency determines the gain of the nonlinearity to the signal. 
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I c / I I L .  Tomue on 
y 

1 volt = 0.1 

I Resistance Network 1 

Potentiometer Values: 

H 
166 lo4 

A =  

Figure G. 1-1 Mechanization 

Gimbal (Mil L 
1 volt = 1.66 x lo5 / I  dyne-cm 

3 4Pu* 

4P Yn 

ZF- 

E = g T  

2 2  
F =  

Diagram for Eq. (G. 1-1) 
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(1 volt = 1.66 x 

(1 volt = 2 x 

105 dyne-cd M~ 
10' dyne-cd M~ 

= 1.66 mV (Binary) 
0.166 mV (Ternary) "u 

* Gain = 10 for binary simulation. 

Figure G. 1-2 Mechanization of Eq. (G. 1-2) 
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Consequently, if the limit cycle switches to a new mode, the loop charac- 
teristics as seen by the input signal can be radically altered. The loop 
has a different closed loop frequency response for each limit cycle mode 
encountered. 

1.60 mV (Binary) 
0.160 mV (Ternary) 1 volt = { 

r r 

Dynamics 00 
Relating Input Rate +N onlinearity - 
to Gimbal Torque - . i 

Mtg 

rt 

1 volt = 2 x lo4 dyne-cm 

Torquer 
1 volt = 1.00 mA 

Figure G. 1-3 Computer Scaling Used in Simulation of 
Gyros with Rotor-to-Gimbal Compliance 

Before a frequency response simulation is made, all possible 
limit cycle modes are determined analytically. One check of the simula- 
tion is to verify the existence of the calculated limit cycle modes. In this 
manner information is obtained on how the loop must be stimulated in 
order to make the various modes appear. After the simulation has been 
verified as a true representation of the loop dynamics, a particular limit 
cycle mode is obtained and the frequency response for this mode is mea- 
sured. During the measurement care must be exercised to avoid those 
frequency regions where different modes may be excited. This procedure 
is repeated until all modes have been considered. 
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condition is reached. For the system dynamics considered to date, this 
res peak occurs at a lower frequency than any resonance attributable 
to the dynamics of the gyro torque loop. Since the usable frequency range 
of most gyro loops consists of the region below the first gain peak, there 
is little need, given the present dynamics, to examine the region above the 
first pole frequency. Thus, in the present case the important part of the 
closed loop frequency response is determined by rotor- to-gimbal compli- 
ance characteristics and not by the float and torquer time constants, 

G. 3 TERNARY SIMULATION CONSIDERING COMPLIANCE 

Most of the discussion in Appendix F concerning the ternary 
simulation applies when rotor- to-gimbal dynamics are considered. The 
discriminator level 6 is lowered in the simulation until the loop starts to 
limit cycle. The limit cycle mode(s) thus obtained are checked against 
those predicted by analysis. If the modes are as predicted the simulation 
represents the desired dynamics. As with the binary loop (Section G. 2), 

a pole of Eq. (G. 1-1) causes a peak which dominates the closed loop fre- 
quency response of the ternary loop. The only difference is that the peak 

by quenching. 
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APPENDIX H 

THE FOURIER ANALYZER 

One problem encountered in measuring the sinusoid frequency 
response of the pulse rebalanced gyro loop is that the loop output is not a 
sinusoid. The locp output is taken at the output of the nonlinearity; it 
consists of a series of rectangular pulses. When an input of the form 
A sin ut is applied to the loop, the loop output y is of the form 

There is no constant term at the output because the input is assumed to be 

an unbiased sinusoid and no rectification takes place within the loop. The 
loop transfer function evaluated at the frequency u is defined by the 
equation: 

Phasor Rep, of the ut Component at Freq. u Transfer = Phasor R e p r e s e n b t z o f  the Input (Freq. u) 
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It is necessary to measure the amplitudes B: and B: of the in-phase and 
the quadrature components at frequency win order to calculate the closed 
loop transfer function at that point. 

H. 1 ANALYZER OPERATING PRINCIPLES 

The Fourier analyzer uperating concept is based in part on the 
following two identities: 

03-31 
2 1  sin e =  2 (I - cos281 

03-41 
COS 2 1  e = -  (1 + ~ 0 ~ 2 8 )  

2 

If the gyro output is multiplied by A sin ut, the result is as follows: 

W 

y A sin ut = @:A sin ut sin not + B,"A sin ut cos nut ) 
n = l  

S 2 C = B1 Asin wt + B1 Acoswtsinwt + ... 

B ~ A  
- -- + oscillatory terms 2 03-51 

All terms except the constant term have zero average values. Accordingly, 
if the product is time averaged over an integer number of cycles at frequency 
w, the result is: 
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B!A 
2 yAsinwt = 

where the bar denotes time averaging. Solving for BY gives 

= yAsinut  (H- 7) 

If the output y is multiplied by A cos ut (the input phase sdfted 90°) and 
time averaged, a similar argument can be used to show that 

The conceptual operation of the Fourier Analyzer is shown in block dia- 
gram form in Fig. H. 1-1. Since the required 90" phase shift is achieved 
using an integrator, the output of the quadrature component multiplier is 
the desired quantity divided by o. 

H. 2 FOURIER ANALYZER MECHANIZATION 

The analog computer mechanization diagram for the Fourier 
Analyzer is shown in Fig. H. 2- 1. The analyzer is scaled in such a way 
that if A = 1 volt, the in-phase output component is one volt when the gyro 
loop is producing unity closed loop gain with no phase lag. Since the input 
scaling is 1 volt = 0 , l  rad/sec, the amplitude of the in-phase component 
Bt in rad /sec can be computed 

03-91 
S In-Phase Output Component 

(Bl)rad/sec = -A 

15 7 



The Quadrature Correction Divisor is used to compensate for the l/o 
factor introduced when the input signal is phase shifted. Given the Quadra- 
ture Output Component and the Quadrature Correction Divisor, the true 
quadrature component, BY, is computed. 

(H- IO) C - 1 Quadrature Output Component 
Quad rature Correction Divisor (Bl)rad/sec - 

Figure H. 1-1 Conceptual Operation of the 
Fourier Analyzer 

The mechanization is designed to prevent a constant input to the 
gyro from causing a ramp into the Quadrature multiplier. 
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A sin wt N *Y t - 

4 

In-Phase 

Component 
output 

Quadrature 
Output 

Component 

Quadrature Correction Divisor 

Figure He 2- 1 Analog Computer Mechanization 
of the Fourier Analyzer 

The low pass filters used to attenuate high frequency terms 
from the two multiplier outputs have a bandwidth of 0.01 rad/sec. Con- 
sequently, the rise time of the filters in response to constant inputs is 
five minutes (three time constants). Care must be exercised to wait the 
required time period before observing the In-Phase and Quadrature Output 
Components. 
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The use of a second order differential equation to describe the 
d y n a ~ i c  relation between float angle 
of-freedom gyro permits si 

d a p ~ ~ i e ~  torque in a single- 
le c a ~ c ~ ~ a t ~ o n  of limit cycle and f r ~ ~ u e ~ c y  

racteristics. The effects considered in such a ~ ~ n a m i c  model 
of the gyro float are only those of lumped rotor and gimbal inertia and linear 
fluid damping. It is now desired to inv 
pliance between the rotor and 

he effects of angular corn- 
generate sizable 

r 
momentum. Consequently, the potential exists for significant modification 
~f the transfer functions us& in d ~ t e r ~ ~ i ~ g  gyro limit cycles and closed 
loop frequency response. 

ets essential for cons 
to-gimnba1 compliance. 
input (M) and output 

r is connected to the gimbal al 
s t ~ ~ ~ r ~  members with stiffness kl and 

respectively. ~ ~ ~ u ~ l  for motion about the 

lap. rotations of the rotor 
fixed reference frame are r ~ ~ e s e n ~  
subscript to show axis of rotatian. 



H 

IA 

Figure 1-1 Rotor- to-Gimbal Compliance 

Summing moments on the rotor about the gyro input axis: 

Iii A = - k  (A l - A  ) + H A r  -dl(Ari - A  
gi 0 

r. 1 r. r i  

Summing moments about the gyro output axis: 

I oor r 0 =-ka(Ar 0 - A  g0 )-dr. 1 -d2(Aro -Ago) 

Assuming that the gyro case and gimbal h r m  an essentially rigid structure 
about the gyro input axis, Agi can be represented in Laplace Transform 
notation as the integral of the angular rate of the gyro about its input axis, 
ai: 
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Similarly, Ago can be represented in terms of the angular rate about the 
output axis and the angle between the gyro case and gimbal, a0: 

@O A = - + a o  
S g0 

(1-4) 

Assuming equal rotor inertias and stiffness and damping coefficients about 
the input and output axes, Eqs. (1-1) and (I[-2) can be written in terms of the 

Laplace Transform operator, s, as a vector-matrix equation: 

2 Irs + d s  + k  I 
P 

- HS 

2 Irs + d s  + k 

The rotor exerts a moment on the gimbal about the latter's output axis 
according to 

Rotor moment on gimbal = k 

Using Eq. (1-5): 

1 
-H(k2+2kds+d 2 2  s ) 

2 2 @i Rotor moment on gimbal = 
(s Ir .f ds -f l#+H s 

(1-5) 

s2 (k + ds) <."I," + sdIr + kIr + H2) 
2 2 2 2  A 

go 
+ 

(6 I r + d s + k )  + H  s 
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For limit cycle and closed loop response analyrses the variable Ag is 
represented by its component aoe A signal flow di showing the 
compliance effects as expressed by Eq. (1-6) is given in Fig. 1-2. The 
block marked "Float Dynamics" is the transfer function between the net 
torque impressed on the gimbal and the gimbal angle, 0 1 ~ .  

0 

where 'pf = /e. It should be noted that this differs from the definition 
of p usually used, 
rotor and gimbal are considered to be rigidly attached and the time con- 
stant is computed u the combine moment of inertia of the two com- 

separately and the gimb 
inertia of the gim 

Og 
the gyro is modeled by simple dynamics, the 

m compliance is considered, the gimb arad rotor are treated 

g 
namics depend only on loo , the output axis 

Define: 

2 L J k  5-l - q- 
A d 
= 2 -  

d p  arethenatu frequency and ing ratio, respectively, 
d second order system slumed about each axis in Fig. 1-1, 

The block diagram of Fige 1-2 can now be reduced to a more compact form, 
shown in Fig. 1-3. The transfer function of the float dynamics, cWO/Nz,t, 

is given by: 
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I 1 

Figure 1-2 Signal Flow IX ram of Gyro Loop 
Including Compliance Effects 

Rotor Dynamics Float Dynamics’ 

U 

Figure 1-3 Signal Flow Diagram Including 
Compliance Effects (Compact Form) 
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where 

The transfer function which relates the input angular rate, Ui ,  to the 
moment exerted on the gimbal by the rotor, Mi, is 
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APPENDIX J 

RECOVERING ANGULAR RATE INFORMATION 
FROM THE OUTPUTS OF PULSE TORQUED GYFtOS 

The presence of a strapdown inertial navigator in a vehicle 
suggests that the same body-fixed instruments be used to provide motion 
indications for an autopilot? Of particular interest is the vehicle angular 
rate resolved into body axes, Unfortunately, accurate strapdown gyros 
usually provide information in the form of incremental angular rotation 
about the sensor input axis and some data processing is necessary to re- 
cover an indication of angular rates. This Appendix outlines several such 
techniques. 

J. 1 ASSUMPTION OF PIECEWISE CONSTANT ANGULAR RATES 

I3 the body axis angular rates are varying slowly compared to 
the output frequency af the gyros, a simple scheme for recovering angular 
rate information may suffice. This involves collecting gyro output pulses 
over a given time period and dividing the net indicated angular rotation of 
the sensor by the interval during which the pulses are collected. The 
estimate of angular rate about the gyro input axis, q, is given by 

A 

*Jn addition to the desire for body axis angular rate information for use in 
a vehicle autopilot, some accuracy advantage may be gained if angular 
rate information is available for direction cosine matrix calculations. 
However, this consideration is beyond the scope of the present report. 

167 



(J. 1- 1) 

se weight and clock frequency and 
r and s are integ bers. The product r 6 is the angular inc~ement 
measured dur sing the interval for calculating 

h to permit the approxi 

A 
Errors  in the estimate of M i  of Eq. (J. 1-1) arise from time- 

varying input angular rates and from quantization of the gyro output, The 
quantization error  in the angular increment rA8 can be viewed as a ran- 

stributed over the range (- 6/2, 86/2) with a 
A 

12, The mean square error  in q is: 

(J. 1-2) A 
2 A 

are Error in toi = & ) ; T = S  

uation (J. 1-2) illu5tra~es so e factors in the accurate estimation of 
lar rate from of pulse torqued gyros, Consistent with the assump- 

rval sT should be made as large 
 also^ finer gyro 
particular vehicle enviro 
acceptable. 

zation gives smaller errors  in 
ent and autopilot this sche 

ain and phase relations for this rate recovery technique based 

on a Pinear gyro model and the assumption that s >> 1, are derived in 
Ref. 8. The gain relation, expressed as a function of normalized frequency 
is illustrated in Fig. J. 1-1. 
cos is the frequency at which new values of angular rate are computed: 
os = 2lr/sT. From Fig, J. 1-1 it can be seen that this approach to angular 
rate recovery is satisf 

he phase lag is simply -2n dw,, where 

r y  when new angular rate estimates are calculated 
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at a frequency which is an order of magnitude higher than that of the signal 
being recovered. If a limit cycle of known frequency, 04, is present in the 
gyro output, proper adjustment of the frequency us will remove this un- 
wanted oscillation from the angular rate estimate. For example, if 

os = 
limit cycle after the first calculation is performed. If it is necessary to 
compute angular rate information at a higher frequency to measure trouble- 
some vehicle oscillations, some of the limit cycle will be evident and 
further filtering of the angular rate signal may be required. 

no angular rate will be indicated as a consequence of the gyro 

0.01 I__ 
0.1 

Figure J. 1- 1 

1 
Frequency of Angular Rate Signal, q 

t2dsT) 

Gain Characteristics for Integrating Gyro 
and Rate Recovery Techniques =pressed 
in Eq. (J. 1.1). Source: Ref. 80 
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J.  2 ASSUMPTION OF PIECEWISE 
CONSTANT ANGULAR ACCELERATION 

If the er rors  produced in the technique discussed in Section J, 1 
are unsatisfactory, angular rate information can be made more sophisti- 
cated by including the possibility of angular acceleration. In this case the 
derivative of q is assumed to be piecewise constant. Over my interval7 
the gyro output, rA8 is assumed to describe an angular rotation generated 
according to: 

rAe(t)  = f q(t) dt = alt + a2t (J, 2- 1) 2 

0 

and the coefficients a1 and a2 are to be recovered from the gyro outputs. 
Two consecutive measurements of angular rotation, rn- 1A8 and rnAe ,  
are required to estimate angular rate at t = n7. The coefficients a1 and 
a2 are assumed constant over the time interval of length 27. Using the 
equations : 

(J. 2-2) 

2 A  A n7 

(n- 2)7 
(rn-l+rn)A8 = 1 q(t) dt = 27ajl + 47 a2 

estimates of ai and a2 at t = (n -2 )~a re  found: 

(Jo 2-3) 
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The estimate of body angular rate about the gyro input axis at time n7 is 
the derivative of the right side of Eq. (J. 2- 1) evaluated at t = 27: 

(Je 2-4) 

Using arguments similar to those applied in Section J. 1 and assuming that 
e r rors  in the gyro output angles indicated for consecutive periods of dura- 
tion 7 are not correlated, the e r ro r  in the estimate of wi caused by gyro 
output quantization has a mean square value given by 

A 2 MeanSquare Error in  q - 5 1 Ae Caused by Quantization - €2 0 7 (J, 2-5) 

Comparison of Eq. (J. 2-5) with Eq. (J. 1-2) indicates that for both approaches, 
the e r rors  in q have similar relative dependence on the output observation 
interval 7 and the gyro output quantum A8, The absolute sensitivity of the 
more complex scheme under discussion here is larger but this fact should 
be balanced against the anticipation of smaller e r rors  from incomplete 
description of the angular rate history, 

A 

The accuracy involved in assuming the angular rate model im- 
plied by Eq. (J. 2- 1) can be determined by expressing oi as a polynomial 
with any desired number of terms, For example: 

q(t) 9 b g + b l t + b 2 t  2 (Jo 2-6) 

The output of a perfect gyro over an interval 7 would then be 
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(J. 2- 7) 

gn = J Ui(t) dt 
(n- 2)T 

Substibtimg Qn-1 for rn-1 A8 and Qn for (rn - 1 + rn) A9 in Eq. (Jo 2-4) 
yields the estimate 

10 (Jo 2-8) q(n?) = bo + 2b1T + - b 7'2 + e 0 3 2  
A 

A 
The er ror  in % using the technique discussed in this section is the differ- 

ence between Eqs. (J. 2-8) and (J. 2-6): 

A 
e = ui(np) - q(n7) 

(Jo 2-9) 

= --: b2T2 + higher order terns in ? 

The er rors  caused by incomplete specification of the nature of q are pro- 
portional to the second and higher power of 7 ,  as would be expected from 
the fact that second and higher derivatives of input angular rate are ignored 
in this formulation. Of course, her order polynomial representations 
of q can be used or the polynomial can be fitted to more data points. For 
example, see Ref, 5. 
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J. 3 QPTIMAL FILTERING 

Optimal linear filtering cm be used to recover a.qpIar rate in- 
formation from the outputs of pulse rebalanced integrating gyros, Some 
work has been performed at TASC in this area but has not been documented. 
The discussion below summarizes that effort and presents some indications 
of the accuracy which can be obtained, 

In order to apply linear filter theory to the problem of recover- 
ing angular rates, motion about the gyro input axes is described as a 
random variable, In particular, angular rate is modeled as an exponen- 

ly correlated quantity, The gyro is assumed to provide a quantized 
representation of the integral of the random angular rate, Since the mea- 
surement to be processed by the filter is quantized, recent developments 
in the design of optimal linear filters (Ref. 6) are employed to account for 
this  aspect of the problem. Based on the analytic determination of steady- 
state er rors  in the estimate of angular rate, the normalized relations 
illustrated in Fig, J, 3-1 were obtained, Caution should be exercised in 

using these curves. The relations illustrated are based on the assumption 
that process noise acts on the system in a way that causes the conditional 
e r rors  in estimates of the state variables to have a G a u s s i ~  
~ m m e ~ a t ~ l y  prior to each measurement, 
the magnitude of the process naise, the angulasc. rate correlation perio 
and the time between new inputs to 

ent depends on 
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0.1 
0.1 1 

NT3/(A6 )2 

- 
e 2  = 

N = Covariance of the process noise driving 
Steady state mean square error in k i  

the linear first order system whose 
output represents vehicle angular rate 

q = Correlation time of vehicle angular rate 

10 

Figure J. 3-1 Angular Rate Estimation Errors: 
Optimal Linear Filter for Quan- 
tized Measurements 
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